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Fast and Robust 3D Correspondence Matching and Its Application
to Volume Registration

Yuichiro TAJIMA†a), Nonmember, Kinya FUDANO††, Koichi ITO†, and Takafumi AOKI†, Members

SUMMARY This paper presents a fast and accurate volume correspon-
dence matching method using 3D Phase-Only Correlation (POC). The pro-
posed method employs (i) a coarse-to-fine strategy using multi-scale vol-
ume pyramids for correspondence search and (ii) high-accuracy POC-based
local block matching for finding dense volume correspondence with sub-
voxel displacement accuracy. This paper also proposes its GPU implemen-
tation to achieve fast and practical computation of volume registration. Ex-
perimental evaluation shows that the proposed approach exhibits higher ac-
curacy and lower computational cost compared with conventional method.
We also demonstrate that the GPU implementation of the proposed method
can align two volume data in several seconds, which is suitable for practical
use in the image-guided radiation therapy.
key words: CT, MRI, registration, phase-only correlation, GPU

1. Introduction

Recently, the use of Computed Tomography (CT) and Mag-
netic Resonance Imaging (MRI) data makes it possible to
analyze internal organs in 3D space by reconstructing a 3D
volume data from a set of slice images. In addition, the spa-
tial resolution of medical volume data has been acceptable
in the practical use of daily medical practice [1], since med-
ical imaging technologies have been rapidly improved.

Medical volume matching is an important fundamental
task for analyzing medical volume data such as volume reg-
istration, volume fusion, etc. Comparing medical volume
data acquired in different days, we can observe disease pro-
gression and detect anatomical changes. Combining differ-
ent types of volume data from various imaging devices, we
can observe the integrated information from only one vol-
ume data. Since there is unknown transformation between
medical volume data acquired in different timing, the ac-
curate and robust medical volume matching method is re-
quired.

So far, the medical volume matching methods have
been proposed, which are classified into marker-based [2],
geometric structure-based [3] and voxel similarity-based [4],
[5] methods. In the marker-based method, the locations
of implantable makers are used to align medical volumes,
while the markers have to be invasive for tomography
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scans [2]. In the geometric structure-based method, ICP (It-
erative Closest Point) algorithm is well-known [3]. It is dif-
ficult to align medical volume data acquired from the dif-
ferent imaging devices, since their structures are different
from each other. The voxel similarity-based method is based
on maximization of the similarity between medical volume
data, and is the most popular method in medical volume
matching [1]. Normalized Mutual Information (NMI) pro-
posed by Studholme et al. [4] is widely used to evaluate
similarity between medical volumes. The similarity-based
method using NMI is robust in multimodality cases, while
its computational cost is significantly high due to nonlinear
optimization to maximize similarity. Also, the correct so-
lutions are not obtained, if the appropriate initial values are
not set.

Addressing the above problems, we propose a novel
volume correspondence-based method for fast and accurate
medical volume registration. The proposed 3D correspon-
dence matching method is based on 3D Phase-Only Cor-
relation (POC) [6]．POC is a high-accuracy image match-
ing technique using the phase components in 2D Discrete
Fourier Transforms (DFTs) of given images [7]–[10] and
has been successfully applied to computer vision applica-
tions [11]–[14]. 3D POC is defined as an extended version
of 2D POC. The proposed 3D correspondence matching
method employs (i) a coarse-to-fine strategy using multi-
scale volume pyramids for correspondence search and (ii)
high-accuracy POC-based local voxel matching for finding
dense volume correspondence with sub-voxel displacement
accuracy.

The correspondence-based method using 3D POC is
more accurate and faster than the conventional method using
NMI as observed in our preliminary version of this study [6].
However, the computation time to align high-resolution vol-
ume data is still a problem even if the proposed method
is used. The current and past CT data have to be aligned
and compared within a practical computation time. In par-
ticular, the computation time of several seconds is suitable
for practical use of volume registration in the image-guided
radiation therapy. Unlike other volume registration meth-
ods, a parallel implementation can be applied to the pro-
posed correspondence-based method, since the correspon-
dence can be obtained for each reference point and the most
of operations such as Fourier transform can be done in paral-
lel. For the purpose of effective implementation, we propose
a Graphics Processing Unit (GPU) implementation of the
proposed volume correspondence matching method. The
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GPU has been very efficient at manipulating and displaying
computer graphics. Recently, the highly parallel structure of
GPU makes it more effective than general-purpose CPUs for
algorithms where processing of large blocks of data can be
done in parallel. This effort is known as General-Purpose
computation on Graphics Processing Unit (GPGPU) [15].
The GPGPU has been applied to scientific computing and
video processing [16]. So far, there are some works on the
GPU implementation of volume registration method with
nonlinear optimization [17]. The computation of volume
similarity such as NMI is not suitable for the GPU im-
plementation, since the size of shared memory in GPU is
small to compute NMI. Hence, its GPU implementation has
achieved 5–7 times speedup at best [18]. Experimental eval-
uation using actual CT and MRI data demonstrates that the
proposed method exhibits higher registration accuracy com-
pared with conventional method, and is effective even for
multimodality cases such as CT-MRI registration. Also,
we demonstrate that the proposed GPU implementation of
our method exhibits 10–20 times speedup compared with its
CPU implementation.

The rest of the paper is organized as follows: Sect. 2
describes fundamentals of 3D POC and a set of techniques
for high-accuracy volume matching using 3D POC. Section
3 describes the proposed volume correspondence match-
ing method using 3D POC and a set of techniques for
high-accuracy volume correspondence matching. Section
4 shows a proposed GPU implementation of volume cor-
respondence matching method. Section 5 shows an appli-
cation of the proposed method to rigid volume registration
and its performance evaluation. Section 6 ends with some
concluding remarks.

2. Fundamentals of 3D Phase-Only Correlation

This section describes fundamentals of 3D POC and tech-
niques for high-accuracy volume matching using 3D POC.

The 3D POC function is defined as an extended ver-
sion of the 2D POC function proposed in [9]. Consider two
N1 × N2 × N3 volume data, f (n1, n2, n3) and g(n1, n2, n3),
where n1 = −M1, · · · ,M1 (M1 > 0), n2 = −M2, · · · ,M2

(M2 > 0), n3 = −M3, · · · ,M3 (M3 > 0), and hence
N1 = 2M1+1, N2 = 2M2+1, N3 = 2M3+1. Note that we as-
sume here the sign symmetric index ranges {−M1, · · · ,M1},
{−M2, · · · ,M2} and {−M3, · · · ,M3} for mathematical sim-
plicity. The discussion could be easily generalized to non-
negative index ranges with power-of-two volume size.

The 3D Discrete Fourier Transforms (3D DFTs) of
f (n1, n2, n3) and g(n1, n2, n3) are given by

F(k1, k2, k3) =
∑

n1,n2,n3

f (n1, n2, n3)Wk1n1
N1

Wk2n2
N2

Wk3n3
N3

= AF(k1, k2, k3)e jθF (k1,k2,k3), (1)

G(k1, k2, k3) =
∑

n1,n2,n3

g(n1, n2, n3)Wk1n1
N1

Wk2n2
N2

Wk3n3
N3

= AG(k1, k2, k3)e jθG(k1,k2,k3), (2)

where k1 = −M1, · · · ,M1, k2 = −M2, · · · ,M2, k3 =

−M3, · · · ,M3, WN1 = e− j 2π
N1 , WN2 = e− j 2π

N2 , WN3 = e− j 2π
N3 ,

and the operator
∑

n1,n2,n3
denotes

∑M1
n1=−M1

∑M2
n2=−M2

∑M3
n3=−M3

.
AF(k1, k2, k3) and AG(k1, k2, k3) are amplitude components,
and θF(k1, k2, k3) and θG(k1, k2, k3) denote phase compo-
nents.

The normalized cross-power spectrum of F(k1, k2, k3)
and G(k1, k2, k3) is given by

R(k1, k2, k3) =
F(k1, k2, k3)G(k1, k2, k3)

|F(k1, k2, k3)G(k1, k2, k3)|
= e j{θF (k1,k2,k3)−θG(k1,k2,k3)}, (3)

where G(k1, k2, k3) denotes the complex conjugate of
G(k1, k2, k3). Note that θF(k1, k2, k3)−θG(k1, k2, k3) indicates
the phase difference between two volumes. The 3D POC
function r(n1, n2, n3) is the 3D Inverse DFT (3D IDFT) of
normalized cross-power spectrum and is defined as

r(n1, n2, n3) =
1

N1N2N3

∑
k1,k2,k3

R(k1, k2, k3)

×W−k1n1
N1

W−k2n2
N2

W−k3n3
N3
, (4)

where
∑

k1,k2,k3
denotes

∑M1
k1=−M1

∑M2
k2=−M2

∑M3

k3=−M3
. When

two volumes are similar, their POC function gives a distinct
sharp peak like a delta function. The correlation value of the
peak can be used as a good similarity measure for volume
matching, and the location of the peak shows the transla-
tional displacement between the two volumes. Other impor-
tant properties of POC are that POC-based volume match-
ing is not influenced by shift and brightness change, and it
is highly robust against noise.

Let δ1, δ2 and δ3 represent sub-voxel displacements
of f (n1, n2, n3) to n1, n2 and n3 directions, respectively.
The displaced volume can be represented as g(n1, n2, n3) =
f (n1 − δ1, n2 − δ2, n3 − δ3). The 3D POC function between
f (n1, n2, n3) and g(n1, n2, n3) is given by

r(n1, n2, n3)

� α

N1N2N3

sin(π(n1 + δ1))
sin( πN1

(n1 + δ1))

× sin(π(n2 + δ2))
sin( πN2

(n2 + δ2))
sin(π(n3 + δ3))

sin( πN3
(n3 + δ3))

, (5)

where α = 1. The above equation represents the shape of
the correlation peak of the 3D POC function for common
volumes that are minutely displaced with each other. The
peak position of the 3D POC function corresponds to the
displacement between the two volumes. We can prove that
the peak value α decreases without changing the function
shape itself, when small noise components are added to the
original volumes. Hence, we assume α ≥ 1 in practice.

Listed below are important techniques for high-
accuracy sub-voxel volume matching using 3D POC.
(A) Windowing to reduce boundary effects

Due to the DFT’s periodicity, a volume can be consid-
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ered to “wrap around” at a boundary, and hence discontinu-
ities occur at every boundary in 3D DFT computation. We
reduce the effect of discontinuity at volume border by apply-
ing 3D window function to the input volumes f (n1, n2, n3)
and g(n1, n2, n3). In this paper, we employ the 3D Hanning
window defined as

w(n1, n2, n3)

=
1 + cos( πn1

M1
)

2

1 + cos( πn2
M2

)

2

1 + cos( πn3
M3

)

2
. (6)

(B) Spectral weighting technique to reduce aliasing and
noise effects

For natural images, typically the high frequency com-
ponents may have less reliability, i.e., low S/N, compared
with the low frequency components. We could improve the
estimation accuracy by applying a low-pass-type weighting
function H(k1, k2, k3) to R(k1, k2, k3) in frequency domain
and eliminating the high frequency components having low
reliability. In this paper, we employ a Gaussian version of
the spectral weighting function defined by

H(k1, k2, k3) = e
−2π2σ2

{(
k1
N1

)2
+

(
k2
N2

)2
+

(
k3
N3

)2}
, (7)

where σ is constant. In this case, the 3D POC function is de-
fined by the 3D IDFT of H(k1, k2, k3) × R(k1, k2, k3), and the
correlation peak model corresponding to Eq. (5) is rewritten
by

r(n1,n2, n3)

=
1

N1N2N3

∑
k1,k2,k3

H(n1, n2, n3)R(k1, k2, k3)

×W−k1n1
N1

W−k2n2
N2

W−k3n3
N3

(8)

� α

2πσ2
e−((n1+δ1)2+(n2+δ2)2+(n3+δ3)2)/2σ2

. (9)

This function shows the correlation peak at (−δ1,−δ2,−δ3)
as well as the peak model of Eq. (5). Note that the arbitrary
functions can be applied to the POC function as a spectral
weighting function depending on the intended use.
(C) Function fitting for high-accuracy estimation of peak
position

We use the closed-form peak model of the POC func-
tion defined by Eq. (9) directly for estimating the peak po-
sition by function fitting. By calculating the POC function,
we obtain a data of r(n1, n2, n3) for each discrete index n. It
is possible to find the location of the peak that may exist be-
tween voxels by fitting the function Eq. (9) to the calculated
data array around the correlation peak, where α, δ1, δ2 and
δ3 are fitting parameters. However, this method requires an
iterative computation for nonlinear function fitting, result-
ing in significant increase in computation time. Addressing
this problem, we have proposed a Peak Evaluation Formula
(PEF) that directly estimates the POC peak location from
actual data array of the POC function [19]. The use of PEF
allows us to eliminate iterative computation in the peak es-
timation. This technique can be easily extended to three

dimensions. In this paper, we apply the PEF technique to
estimate the peak position of the 3D POC function.

3. Volume Correspondence Matching Using 3D POC

This section describes the details of the proposed volume
correspondence matching method using 3D POC and tech-
niques for high-accuracy volume correspondence match-
ing. The proposed method extracts small regions (small 3D
blocks) from the two volume data, estimates the transla-
tional displacement between the small blocks with sub-
voxel accuracy using 3D POC, and then finds the accurate
corresponding point pairs between the two volume data. In
order to achieve robust correspondence matching, we em-
ploy the coarse-to-fine strategy using volume pyramids to
find the corresponding point pairs between the two volume
data.

Consider two volume data I and J, which are taken at
different timing, or are taken from different sensors. Let
p = (p1, p2, p3) (∈ Z3) be a coordinate vector of a reference
point on I, where Z is the set of integers. The problem of
sub-voxel correspondence matching is to find a real-number
coordinate vector q = (q1, q2, q3) (∈ R3) on J that corre-
sponds to the reference point p on I, where R is the set of
real numbers. Figure 1 shows an overview of the proposed
sub-voxel correspondence matching method. We describe
the details of the proposed method in the following.
Step 1: For l = 1, 2, · · · , lmax, create l-th layer volume data
Il and Jl, i.e., coarser versions of I0 (= I) and J0 (= J)
by reducing I0 and J0 by 2−l. In this paper, calculate Il+1

as mean values of every adjacent 2 × 2 × 2 voxels in Il as
follows:

Il+1(n1, n2, n3)

=
1
8

∑
b1,b2,b3

Il(2n1 + b1, 2n2 + b2, 2n3 + b3), (10)

where b1, b2, b3 ∈ {0, 1}. Jl+1 is also calculated in the same
way.
Step 2: For the coarsest layer l = lmax, calculate the coordi-
nate of the reference point plmax (∈ Z3) as follows:

plmax = (�2−lmax p1�, �2−lmax p2�, �2−lmax p3�), (11)

where �z� denotes the operation to round the element of z
to the nearest integer towards minus infinity. We assume
that qlmax = plmax (∈ Z3) in the coarsest layer. Hence, the
coordinate of the corresponding point qlmax is given by

qlmax = (�2−lmax p1�, �2−lmax p2�, �2−lmax p3�). (12)

Let l = lmax − 1.
Step 3: For l-th layer, calculate the coordinate of the refer-
ence point pl (∈ Z3) as follows:

pl = (�2−l p1�, �2−l p2�, �2−l p3�). (13)

Also, calculate the initial coordinate ql′(∈ Z3) of the corre-
sponding point ql as follows:
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Fig. 1 Correspondence search using the coarse-to-fine strategy for lmax = 3.

ql′ = 2ql+1. (14)

Step 4: Extract two small 3D blocks f l and gl with their cen-
ters on pl and ql′, respectively, where the size of 3D blocks
is W×W×W voxels. Note that we apply zero padding to the
area of volume data Il and Jl where a portion of small 3D
blocks f l and gl is located on outside of the volume data Il

and Jl. Estimate the displacement between f l and gl with
voxel accuracy using 3D POC. Let the estimated displace-
ment vector be δl (∈ Z3). The l-th layer corresponding point
ql (∈ Z3) is determined as follows:

ql = ql′ + δl. (15)

Step 5: Decrement the counter by 1 as l = l − 1 and repeat
from Step 3 to Step 5 while l ≥ 0.
Step 6: From the original volumes I0 and J0, extract two
small 3D blocks with their centers on p0 and q0, respec-
tively. Estimate the displacement between the two blocks
with sub-voxel accuracy using 3D POC. Let the estimated
displacement vector with sub-voxel accuracy be denoted by
δ (∈ R3). Update the corresponding points as follows:

q = q0 + δ. (16)

Also, the peak value of the 3D POC function is obtained as
a measure of reliability in local voxel matching.

Through the above procedure from Step 1 to Step 6, we
find the corresponding point q on J with sub-voxel accuracy
that corresponds to the reference point p on I. In the pro-
posed method, we set many reference points on I and find
their corresponding points on J to obtain dense correspon-
dence between the medical volumes.

The followings are important techniques for high-
accuracy volume correspondence matching using 3D POC.

(D) Location of Reference Points
The reference points have to be placed on the appropri-

ate location of I, since the medical volume data have regions
without any feature such as the air, which are not suitable for
volume matching. In addition, in the case of the medical vol-
ume data acquired with different types of imaging devices,
the reference points have to be placed on the regions having
the common features between the volumes. If the reference
points are placed on the regions of I having different infor-
mation between the volumes, most of the obtained corre-
sponding points on J are not accurate, so these are outliers.
To address the above problems, we automatically detect the
regions having the common features between the volumes
and set the reference point on the appropriate location of
I. For example, in the case of CT and MRI, the reference
points are placed on bones and skin which can be automat-
ically detected by using the CT value. In general, the CT
values are predefined for each tissues, although we observe
small variations of the CT values depending on the imaging
devices and conditions. In this paper, we employ the range
of the CT values −100 ∼ 0 [HU] to detect skin and ≥ 400
[HU] to detect bones.
(E) Outlier Removal

We propose an outlier removal technique using the
peak value of the POC function as a measure of corre-
spondence reliability. The POC function between the local
blocks exhibits the correlation peak depending on the simi-
larity between the local blocks. If the local blocks are simi-
lar, the correlation peak approaches 1. When the peak value
of the POC function between the local blocks is below a cer-
tain threshold, the corresponding point q is regarded as an
outlier. In this paper, we employ 0.1 as the threshold value
for outlier removal, where this threshold value is empiri-
cally determined. Instead of the constant threshold as men-
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tioned above, we can determine the threshold using statistic
approaches such as mean or standard deviation of peak val-
ues. In order to improve the robustness against outliers, we
also employ RANSAC (RANdom SAmple Consensus) [20]
to eliminate outliers from the corresponding point pairs ob-
tained by the proposed method.

4. GPU Implementation

In this paper, we use the CUDA (Compute Unified De-
vice Architecture) programming model [21] to implement
the proposed correspondence matching method on the GPU.
CUDA provides efficient parallel computing using both
task-based and data-based parallelism.

Figure 2 shows a data parallel programming model in
CUDA. The execution model in CUDA consists of two con-
cepts: a kernel and a program. A kernel is a basic execution
unit in CUDA. A program is a collection of kernels and in-
ternal functions. The program invokes a kernel over an in-
dex space called a grid. A single kernel instance at a point in
the index space is called a thread. Threads are also grouped
into thread blocks as shown in Fig. 2. The data-parallel ex-
ecution is achieved by executing multiple thread blocks in
parallel.

Figure 3 shows a memory model in CUDA. CUDA
handles five memory spaces such as register, local, global,
constant and texture. The global memory permits access to
all threads in all thread blocks and has a large amount of
capacity with long latency. The local memory is shared by
all the threads in each thread block. The register memory
can only be used by a thread. The constant memory may be
used by all the thread blocks to store read-only data. The
local and register memories can be accessed faster than the
global memory, since the substance of the local and register
memories is located on each core. Note that the capacity of
the local and register memories is small. In the case that the
amount of local memory per thread block or register mem-
ory per thread is increased, it results in reducing the number
of parallel execution of threads for each core.

We present the GPU implementation techniques for
the proposed volume correspondence matching method de-
scribed in Sect. 3. According to the features of CUDA de-
scribed in the above, we employ the following two tech-
niques. Note that we employ the CUDA Fast Fourier Trans-
form library (cuFFT) to calculate 3D POC function.
(i) Parallel execution for each reference point and voxel

The volume correspondence matching is to find a cor-
responding point on the input volume data that corresponds
to the reference point in the reference volume data. The vol-
ume correspondence matching for each reference point is
done in parallel, since this process is independent for each
reference point. So, we assign one thread block to the corre-
spondence matching for one reference point. In the process
for each reference point, we extract the local voxel around
the reference point and the search window in the input vol-
ume data, and perform the local voxel matching using 3D
POC. The above process is independent for each voxel in

Fig. 2 Data parallel programming model in CUDA [21].

Fig. 3 Memory model in CUDA [21].

the search window. So, we assign one thread to the process
for one voxel in the search window.
(ii) Size of thread block

The parallel processing is performed using N × N × N
threads per one thread block for the search window with
N ×N ×N voxels. Depending on the size of the search win-
dows, a large number of resources for each thread block may
be consumed and then the number of active thread blocks in
each core may be reduced. Addressing this problem, we use
N × N × N′ threads per one thread block and repeat 
 N

N′ �
times. Note that we have to empirically determine the opti-
mal N′, since the optimal N′ depends on the GPU architec-
tures and the size of search windows.

5. Rigid Volume Registration

We apply the proposed volume correspondence matching
method to rigid volume registration. Registration between
medical volume data such as CT and MRI is one of the im-
portant techniques in the field of medical image processing.
The deformation between medical volume data is observed
due to soft organs, imaging devices, temporal change of or-
gans, etc. even if they are taken from the same regions of
the subject. To compare volume data acquired in different
days or combine different types of volume data from various
imaging devices, the accurate and fast volume registration
method is required. Addressing this problem, we propose a
novel volume registration method using POC-based volume
correspondence matching.

First, we obtain a set of accurate corresponding point
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pairs between the two volumes using the proposed corre-
spondence matching method with the techniques (D) and
(E). Next, we estimate the parameters of the rigid transfor-
mation such as the rotation matrix R and the translation vec-
tor t using the corresponding point pairs. The parameters of
the rigid transformation can be estimated from more than
3 corresponding point pairs. To estimate the parameters,
we use the least-squares fitting algorithm proposed in [22],
which calculates least-squares solutions of R and t based on
the singular value decomposition.

If there are large deformation between the two vol-
umes, it may be difficult to align the volumes by one-time
procedure of correspondence matching and parameter esti-
mation. Addressing this problem, we iteratively estimate
the parameters of the rigid transformation. The reference
volume is transformed by the rigid transformation with the
estimated parameters so as to reduce the deformation be-
tween the volumes. We perform the correspondence match-
ing between the transformed reference volume and the in-
put volume and then estimate the parameters of the rigid
transformation. By repeating the above procedure such as
correspondence matching, parameter estimation and volume
transformation, we can precisely align the two volume data
even if the volume data have large deformation. In this pa-
per, the procedure is repeated until the rotation angle be-
tween two volumes is below threshold, where the rotation
angle is calculated from the rotation matrix R. The thresh-
old is 1◦ in this paper. We empirically confirm that the es-
timated parameters of the rigid transformation is converged,
even if the volumes are simultaneously rotated by ±30◦ for
roll, pitch and yaw. Unless the subject deliberately changes
his/her position during two acquisition, the rotation angle
between the volumes is not over ±30◦ for roll, pitch and yaw.
Hence, we can achieve the robust rigid volume registration
by iteratively estimating parameters of the rigid transforma-
tion.

6. Experiments and Discussion

We evaluate the accuracy and computation time of the rigid
volume registration using actual CT and MRI data. We com-
pare the registration accuracy of the proposed and conven-
tional methods in Sect. 6.1, while we describe the effective-
ness of the GPU implementation of the proposed method in
Sect. 6.2.

6.1 Registration Accuracy

In this paper, we use the public medical volume database
provided by RIRE (Retrospective Image Registration Eval-
uation Project) [23] to evaluate the registration accuracy of
the proposed and conventional methods. The RIRE database
consists of one training dataset with ground-truth registra-
tion parameters and 16 testing dataset without ground-truth
registration parameters. Each dataset has one CT, three MRI
(T1, T2, PD) and one PET taken from a subject. In this pa-
per, we use CT and MRI (T1) to evaluate the registration

accuracy both for training and testing datasets.

6.1.1 Experiments with RIRE Training Dataset

In this experiment, we use one CT and one MRI data
in the RIRE training dataset as shown in Fig. 4. The
CT and MRI data are rescaled and zero-padded to
512 × 512 × 177 isotropic voxels with spatial resolution
0.65×0.65×0.65 mm.

First, we align CT and MRI data using the ground-truth
registration parameters supplied by RIRE project. Then,
we transform MRI data using random translation and ro-
tation, where N (= 8) groups are generated in this pa-
per. We randomly select the translation t̂i and rotation r̂i

so as to have || t̂i|| within [−20, 20] voxels and ||r̂i|| within
[−20, 20] degrees. Next, we estimate the translation ti

and rotation ri using the rigid volume registration meth-
ods, where i = 1, · · · ,N. Finally, the registration accuracy
for translation and rotation is evaluated by Euclid distances
||et

i || = ||ti − t̂i|| and ||er
i || = ||ri − r̂i||, respectively.

In this experiment, we use the rigid volume registration
method proposed by Studholme et al. [4] as a conventional
method, which is one of the well-known registration meth-
ods for medical volume data. This method estimates the
parameters of rigid transformation by maxmizing the NMI
value using the nonlinear optimization approach, where the
NMI value is calculated using the overlapped area between
CT and MRI data. To implement the conventional method,
we use the Matlab and C programs available in [24], where
we use the version released on 15 Apr 2009. We employ the
parameters of the proposed method as shown in Table 1.

Figure 5 shows the registration results using the con-
ventional and proposed methods. As shown in Fig. 5 (c), the
conventional method cannot align CT and MRI data, since
the MRI data is still rotated. On the other hand, as shown
in Fig. 5 (d), the proposed method correctly aligns CT and
MRI data, since the position of MRI is almost the same as
the true position of MRI as shown in Fig. 5 (a). The MRI
data in Fig. 5 (b) is transformed by

(a) (b)

Fig. 4 Volume data in RIRE training dataset: (a) CT and (b) MRI.

Table 1 Parameters of the proposed method.

# of reference points 1,000
Block size W [voxel] 32 × 32 × 32
Spectrum weighting function Gaussian function (σ = 0.5)
# of layers lmax 4
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(a) (b)

(c) (d)

Fig. 5 Registration results for RIRE training dataset: (a) CT and MRI
data aligned by the ground-truth registration, (b) CT and MRI data after
manual transformation of MRI data, (c) registration result using the con-
ventional method and (d) registration result using the proposed method,
where the orange lines indicate edges extracted from the CT data.

Rmanual =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.9915 0.1094 −0.0701
−0.0932 0.9748 0.2029

0.0906 −0.1946 0.9767

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

tmanual =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−3.6839

7.9808
8.5750

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
where the unit of tmanual is voxel. The estimated parameters
using the NMI-based and proposed methods are

RNMI =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.9930 0.1079 −0.0490
−0.1017 0.9883 0.1139

0.0607 −0.1081 0.9923

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

tNMI =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−2.8218

3.0131
5.9425

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

RPOC =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.9915 0.1094 −0.0708
−0.0935 0.9757 0.1982

0.0907 −0.1899 0.9776

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

tPOC =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−2.9968

9.9321
9.3035

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
respectively. As a result, the parameters RPOC and tPOC esti-
mated by the proposed method are close to the ground truth
Rmanual and tmanual compared with the parameters RNMI and
tNMI estimated by the NMI-based method.

Figure 6 shows the registration errors for the conven-
tional and proposed methods, where the horizontal and ver-
tical axes indicate rotation and translation errors, respec-
tively. The average translation and rotation errors of the con-
ventional method are 2.02 voxels and 1.45 degrees, respec-
tively, while those of the proposed methods are 1.44 voxels
and 0.45 degrees, respectively. As a result, the registration
accuracy of the proposed method is higher than that of the
conventional method.

The computation time of each method is evaluated on
the system as shown in Table 2. The computation time is
about 74 seconds for the proposed method and about 1,567
seconds for the conventional method. Thus, the proposed
method not only exhibits the accurate rigid volume registra-

Fig. 6 Registration errors for RIRE training dataset.

Table 2 System specifications.

Item Specification
CPU /Memory Intel Core i3-530 2.93 GHz / 4 GB
OS Windows 7 Pro 64 bit
GPU NVIDIA GeForce GTX 580
CPU Implementation Matlab 7.13.0 /Microsoft VC++ 6.0
GPU Implementation Microsoft VC++ 6.0 / CUDA Toolkit 4.0

tion but also achieves about 21-time faster than the conven-
tional method.

6.1.2 Experiments with RIRE Testing Dataset

In this experiment, we use CT and MRI data taken from
16 subjects available in the RIRE testing dataset. The
size of CT and MRI data is different from each sub-
ject. In order to have the same voxel size each other,
the CT and MRI data are rescaled and zero-padded to
256 × 256 × 98 isotropic voxels with spatial resolution
0.8×0.8×0.8 mm∼1.3×1.3×1.3 mm.

Since this dataset does not have the ground-truth reg-
istration parameters, we use the linearity between the given
and estimated transformation to evaluate the registration ac-
curacy of the methods. We transform MRI data using ran-
dom translation and rotation, where N (= 8) groups are gen-
erated in this paper. We radomly select the translation t̂i and
rotation r̂i so as to have || t̂i|| within [−10, 10] voxels and
||r̂i|| within [−10, 10] degrees. Then, we estimate the trans-
lation ti and rotation ri using the rigid volume registration
methods, where i = 1, · · · ,N. Let ro and to be the unknown
offsets between CT and MRI data. The problem considered
in this experiment is to estimate r̂i + ro and t̂i + to. If the
CT and MRI data are correctly aligned, the estimated pa-
rameters are ri = r̂i + ro and ti = t̂i + to. Hence, the errors
ri − r̂i and ti − t̂i should be constant independent of i, since
ri − r̂i = ro and ti − t̂i = to. Thus, we evaluate the registra-
tion accuracy by the standard deviations of et

i = ti − t̂i and
er

i = ri − r̂i. The standard deviation of er
i , i.e., the rotation
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error SDr, is calculated by

SDr =

√√√
1
N

N∑
i=1

||er
i − ēr ||2, (17)

where ēr = (1/N)
∑N

i=1 er
i . The standard deviation of et

i, i.e.,
the translation error SDt, is calculated in the same way.

Figure 7 shows the registration errors for the conven-
tional and proposed methods, where the horizontal and ver-
tical axes indicate rotation error SDr and translation error
SDt, respectively. The average translation and rotation er-
rors of the conventional method are 2.50 voxels and 2.77
degrees, respectively, while those of the proposed methods
are 1.55 voxels and 0.44 degrees, respectively. As a result,
the registration accuracy of the proposed method is higher
than that of the conventional method. The computation time
is about 27 seconds for the proposed method and about 432
seconds for the conventional method. Thus, the proposed
method achieves about 16-time faster than the conventional
method.

6.2 Computation Time

We evaluate the computation time of the proposed method
with CPU and GPU implementations. In this experiment,
we use the CT and MRI data as shown in Fig. 8 (a) where
the size of each volume data is 512 × 512 × 512 voxels. To
evaluate the computation time, we use the system as shown

Fig. 7 Registration errors for RIRE testing dataset.

Table 4 Computation time.

Number of Points 10 × 10 × 10 16 × 16 × 16 32 × 32 × 32
Implementation CPU GPU CPU GPU CPU GPU
Iterations 2 2 2 2 2 2
Correspondence Matching [sec.] 18.99 1.21 71.92 2.96 559.32 19.36
Parameter Estimation [sec.] 0.14 0.79 0.22 0.72 0.52 0.69
Transformation [sec.] 18.65 1.11 18.85 1.12 18.27 1.10
Total [sec.] 44.25 3.11 97.46 4.81 584.59 21.15

in Table 2. As for the CPU implementation, we use Matlab
7.13.0 (64 bit). We employ the parameters of the proposed
method as shown in Table 3. For the purpose of evaluating
the computation time, the 10 × 10 × 10 or 16 × 16 × 16 or
32×32×32 reference points are placed in a reticular pattern.
Note that, as for the GPU implementation, the parameter es-
timation of rigid transformation and volume transformation
are also implemented on GPU.

Table 4 shows the summary of the computation time
of CPU and GPU implementations. Note that “Iterations”
in Table 4 indicates the number of iterations when the it-
erative procedure described in Sect. 5 is finished. Since
the most of computation is the correspondence matching,
the proposed GPU implementation contributes to speedup
the volume registration. The total computation time of the

Fig. 8 Registration results of CT and MRI data: (a) before registration
and (b) after registration using the proposed method.

Table 3 Parameters for computation time evaluation.

# of reference points 103 or 163 or 323

Block size W [voxel] 32 × 32 × 32
Spectrum weighting function Gaussian function (σ = 0.5)
# of layers lmax 5
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CPU implementation is 1∼10 minutes, while that of the
GPU implementation is 3∼20 seconds. As a result, the ef-
fective GPU implementation makes it possible to achieve
significant speedup of the volume registration. In practical
use of the proposed method, it is only necessary to place
about 1,000 reference points on the volume data. Hence,
we can align two volume data in several seconds even for
multimodality cases. Note that the CPU implementation of
the conventional method using NMI takes 8,505 seconds to
align the CT and MRI data.

7. Conclusion

This paper has proposed a novel volume correspondence
matching method using 3D Phase-Only Correlation (POC).
The proposed method has achieved accurate and fast cor-
respondence matching by using (i) a coarse-to-fine strat-
egy using multi-scale volume pyramids for correspondence
search and (ii) high-accuracy POC-based local block match-
ing. We have also proposed a GPU implementation of the
proposed volume correspondence matching. Experimental
evaluation using CT and MRI data has demonstrated that the
proposed approach exhibits higher accuracy and lower com-
putational cost compared with conventional method. We
have also demonstrated that the GPU implementation of
the proposed method can align two volume data in several
seconds, which is suitable for practical use in the image-
guided radiation therapy.
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