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Abstract— A major approach for iris recognition today is to gen-
erate feature vectors corresponding to individual iris images and
to perform iris matching based on some distance metrics. One of
the difficult problems in feature-based iris recognition is that the
matching performance is significantly influenced by many param-
eters in feature extraction process, which may vary depending on
environmental factors of image acquisition. This paper presents
an efficient algorithm for iris recognition using phase-based image
matching. The use of phase components in 2D (two-dimensional)
discrete Fourier transforms of iris images makes possible to achieve
highly robust iris recognition in a unified fashion with a simple
matching algorithm. Experimental evaluation using an iris image
database clearly demonstrates an efficient matching performance
of the proposed algorithm.

I. INTRODUCTION

Biometric authentication has been receiving extensive attention
over the past decade with increasing demands in automated
personal identification. Among many biometrics techniques,
iris recognition is one of the most promising approaches due to
its high reliability for personal identification [1], [2].

A major approach for iris recognition today is to generate
feature vectors corresponding to individual iris images and to
perform iris matching based on some distance metrics [1], [2].
Most of the commercial iris recognition systems implement a
famous algorithm using “iriscodes” proposed by Daugman [1].
One of the difficult problems in feature-based iris recognition
is that the matching performance is significantly influenced by
many parameters in feature extraction process (e.g., spatial po-
sition, orientation, center frequencies and size parameters for
2D Gabor filter kernel), which may vary depending on envi-
ronmental factors of iris image acquisition.

This paper presents an efficient algorithm for iris recogni-
tion using phase-based image matching — an image matching
technique using the phase components in 2D Discrete Fourier
Transforms (DFTs) of given images. The technique has been
successfully applied to sub-pixel image registration tasks for
computer vision applications [3], [4]. In our previous work
[5], on the other hand, we have proposed an efficient finger-
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Fig. 1. Flow diagram of the proposed algorithm.

print recognition algorithm using phase-based image matching,
which has already been implemented in actual fingerprint ver-
ification units [6]. In this paper, we demonstrate that the same
technique is highly effective also for iris recognition. The use
of phase information makes possible to achieve highly robust
iris recognition with a simple matching algorithm (as illustrated
in Figure 1). Experimental evaluation using the CASIA iris
image database [7] clearly demonstrates an efficient matching
performance (EER=0%) of the proposed algorithm.

II. PREPROCESSING

An iris image contains some irrelevant parts (e.g., eyelid, sclera,
pupil, etc.). Also, the size of an iris may vary depending on
camera-to-eye distance and lighting condition. Therefore, the
original image needs to be normalized.

A. Iris Localization

This step is to detect the inner boundary (the boundary between
the iris and the pupil) and the outer boundary (the boundary
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Fig. 2. Iris image: (a) original image, (b) normalized image,
and (c) normalized image with eyelid masking.

between the iris and the sclera) in the original gray-scale im-
age forg(m1, m2) shown in Figure 2 (a). We use an ellipse
as a model of the inner boundary. Let (l1, l2) be the lengths
of the two principal axes of the ellipse, (c1, c2) be its center,
and θ be the rotation angle. We can find the optimal estimate
(l1, l2, c1, c2, θ) for the inner boundary by maximizing the fol-
lowing absolute difference:

|S(l1 + ∆l1, l2 + ∆l2, c1, c2, θ) − S(l1, l2, c1, c2, θ)| . (1)

Here, ∆l1 and ∆l2 are small constants, and S is the N -point
contour summation of pixel values along the ellipse:

S(l1, l2, c1, c2, θ) =
N−1∑

n=0

forg(p1(n), p2(n)), (2)

where p1(n) = l1cosθ · cos( 2π
N−1n)− l2sinθ · sin( 2π

N−1n)+ c1

and p2(n) = l1sinθ · cos( 2π
N−1n) + l2cosθ · sin( 2π

N−1n) + c2.
Thus, we will detect the inner boundary as the ellipse on the
image for which there will be sudden change in luminance
summed around its perimeter. To reduce computation time, the
parameter set (l1, l2, c1, c2, θ) can be simplified depending on
iris images. In our experiments using the CASIA iris image
database, assuming θ = 0 causes no degradation on its perfor-
mance. The outer boundary is detected in a similar manner.

B. Iris Normalization

Next step is to normalize iris to compensate for the elastic de-
formation in iris texture. We unwrap the iris region to a nor-
malized rectangular block of a fixed size (256×128 pixels in
our experiments). In order to remove the iris region occluded
by the upper eyelid and eyelashes, we use only the lower half of
the iris region (Figure 2 (a)) and apply a polar coordinate trans-
formation (with its origin at the center of pupil) to obtain the
normalized image shown in Figure 2 (b), where n1 axis cor-
responds to the angle of polar coordinate system and n 2 axis
corresponds to the radius.

In the transformed iris image, the irrelevant eyelid region
should be masked as shown in Figure 2 (c). In general, the
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Fig. 3. Effective region extraction: (a) normal case, and (b)
case when multiple sub-regions should be extracted.

eyelid boundary can be modeled as an ellipse contour. Hence
the same method to detect the inner boundary can be applied to
eyelid detection.

III. MATCHING

This section describes the detailed process of effective region
extraction, image alignment and matching score calculation.
The key idea is to use phase-based image matching for image
alignment and matching score calculation.

A. Effective Region Extraction

Given a pair of normalized iris images f̃(n1, n2) and g̃(n1, n2)
to be compared, the purpose of this process is to extract, from
the two images, the effective regions f(n1, n2) and g(n1, n2)
of the same size, which do not contain irrelevant regions as
illustrated in Figure 3 (a).

A problem occurs when the extracted effective region be-
comes too small to perform image matching. In such a case,
we extract multiple effective sub-regions from each iris image
as illustrated in Figure 3 (b) by changing the width parameter
w. In our experiments, we extract 6 sub-regions from a single
iris image by changing the parameter w as 55, 75 and 95 pixels.

B. Phase-Based Image Matching

Before discussing the image alignment and the matching score
calculation, we introduce the principle of phase-based image
matching using Phase-Only Correlation (POC) function [5].
Consider two N1×N2-pixel images, f(n1, n2) and g(n1, n2),
where we assume that the index ranges are n1 = −M1 · · ·M1

(M1 > 0) and n2 = −M2 · · ·M2 (M2 > 0) for mathematical
simplicity, and hence N1 = 2M1 + 1 and N2 = 2M2 + 1.
Let F (k1, k2) and G(k1, k2) denote the 2D DFTs of the two
images. F (k1, k2) is given by
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Fig. 4. Normalized iris image in (a) spatial domain, and in (b)
frequency domain (amplitude spectrum), where K 1 = 0.55M1

and K2 = 0.2M2.

F (k1, k2) =
∑

n1,n2

f(n1, n2)W k1n1
N1

W k2n2
N2

= AF (k1, k2)ejθF (k1,k2), (3)

where k1 = −M1 · · ·M1, k2 = −M2 · · ·M2, WN1 = e
−j 2π

N1 ,

WN2 = e−j 2π
N2 , and

∑
n1,n2

denotes
∑M1

n1=−M1

∑M2
n2=−M2

.
AF (k1, k2) is amplitude and θF (k1, k2) is phase. G(k1, k2) is
defined in the same way. The cross-phase spectrum RFG(k1, k2)
is given by

RFG(k1, k2) =
F (k1, k2)G(k1, k2)
|F (k1, k2)G(k1, k2)|

= ejθ(k1,k2), (4)

where G(k1, k2) is the complex conjugate of G(k1, k2) and
θ(k1, k2) denotes the phase difference θF (k1, k2)−θG(k1, k2).
The POC function rfg(n1, n2) is the 2D Inverse DFT (2D IDFT)
of RFG(k1, k2) and is given by

rfg(n1, n2) =
1

N1N2

∑

k1,k2

RFG(k1, k2)W−k1n1
N1

W−k2n2
N2

,

(5)
where

∑
k1,k2

denotes
∑M1

k1=−M1

∑M2
k2=−M2

. When two im-
ages are similar, their POC function gives a distinct sharp peak.
When two images are not similar, the peak drops significantly.
The height of the peak gives a good similarity measure for im-
age matching, and the location of the peak shows the transla-
tional displacement between the images.

In our previous work [5], we have proposed the idea of
BLPOC (Band-Limited Phase-Only Correlation) function for
efficient matching of fingerprint images considering the inher-
ent frequency components in fingerprint images. We have found
that the same idea is also very effective for iris recognition.
Our observation shows that (i) the 2D DFT of a normalized
iris image contains meaningless phase components in high fre-
quency domain, and that (ii) the effective frequency band of
the normalized iris image is wider in k1 direction than in k2 di-
rection (see Figure 4). The original POC function rfg(n1, n2)
emphasizes the high frequency components, which may have
less reliability. We observe that this reduces the height of the
correlation peak significantly even if the given two iris images
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Fig. 5. Example of genuine matching using the original POC
function and the BLPOC function: (a) iris image f(n1, n2),
(b) iris image g(n1, n2), (c) original POC function rfg(n1, n2),
and (d) BLPOC function rK1K2

fg (n1, n2).

are captured from a common eye. On the other hand, BLPOC
function allows us to evaluate the similarity using the inherent
frequency band within iris textures.

Assume that the ranges of the significant frequency band
are given by k1 = −K1 · · ·K1 and k2 = −K2 · · ·K2, where
0≤K1≤M1 and 0≤K2≤M2 as shown in Figure 4 (b). Thus,
the effective size of frequency spectrum is given by L 1 = 2K1+
1 and L2 = 2K2 + 1. The BLPOC function is given by

rK1K2
fg (n1, n2) =

1
L1L2

∑

k1,k2

′
RFG(k1, k2)W−k1n1

L1
W−k2n2

L2
,

(6)
where n1 = −K1 · · ·K1, n2 = −K2 · · ·K2, and

∑′
k1,k2

de-

notes
∑K1

k1=−K1

∑K2
k2=−K2

. Note that the maximum value of
the correlation peak of the BLPOC function is always normal-
ized to 1 and does not depend on L1 and L2. Figure 5 shows an
example of genuine matching using the original POC function
rfg and the BLPOC function rK1K2

fg . The BLPOC function
provides better discrimination capability than that of the origi-
nal POC function.

C. Displacement Alignment

This step is to align the translational displacement between the
extracted images (Figure 3). Rotation of the camera, head tilt
and rotation of the eye within the eye socket may cause the dis-
placements in normalized images. The displacement parame-
ters can be obtained as the peak location of the POC function
rfg(n1, n2). The obtained parameters are used to align the im-
ages.
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D. Matching Score Calculation

In this step, we calculate the BLPOC function rK1K2
fg (n1, n2)

between the aligned images f(n1, n2) and g(n1, n2), and eval-
uate the matching score. In the case of genuine matching, if
the displacement between the two images is aligned, the corre-
lation peak of the BLPOC function should appear at the origin
(n1, n2) = (0, 0). So, we calculate the matching score as the
maximum peak value of the BLPOC function within the r×r
window centered at the origin (r = 11 in our experiments).
When multiple sub-regions are extracted as illustrated Figure 3
(b), the matching score is calculated by taking an average for
effective sub-regions.

If the matching score is close to the threshold value to sep-
arate genuines and impostors, we calculate the matching score
with scale correction (see Figure 1).

IV. EXPERIMENTS AND DISCUSSIONS

This section describes a set of experiments using the CASIA
iris image database (ver 1.0) [7] for evaluating matching per-
formance. This database contains 756 gray-scale eye images
(320×280 pixels) with 108 unique eyes and 7 different images
of each unique eye. We first evaluate the genuine (intra-class)
matching scores for all the possible combinations of genuine
attempts (7C2×108 = 2268 attempts). Next, we evaluate the
impostor (inter-class) matching scores for 108C2 = 5778 im-
postor attempts, where we take a single image for each eye
and make all the possible combinations of impostor attempts.
Figure 6 shows distributions of genuine and impostor match-
ing scores. The figure shows a good separation of genuine
and impostor matching scores, where the minimum genuine
matching score is 0.1464, and the maximum impostor matching
score is 0.1428. The score between these values can be chosen
as a threshold to distinguish between the two classes. Thus,
for this experiment, we can achieve EER=0%, where the EER

(Equal Error Rate) is the error rate where the FNMR (False
Non-Match Rate) and the FMR (False Match Rate) are equal.
Some reported values of EER from [2] using the CASIA iris
image database are also shown in the same figure for reference.
Note that the experimental condition in [2] is not the same as
our case, because the complete database used in [2] is not avail-
able at [7] due to the usage rights of iris images. The number
of iris images in the database available at [7] is smaller than the
complete database. The result demonstrates a potential possi-
bility of phase-based image matching for creating an efficient
iris recognition system.

V. CONCLUSION

In our previous work, we have developed actual fingerprint ver-
ification units [6] based on phase-based image matching. In
this paper, we have demonstrated that the same approach can
be highly effective also for iris recognition. The proposed ap-
proach will be useful for implementing a unified hardware/software
engine for multimodal biometric system with iris and finger-
print recognition capability.
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