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Abstract— This paper presents a digital reaction-
diffusion system (DRDS) — a model of a discrete-time
discrete-space reaction-diffusion dynamical system —
for designing new image processing algorithms inspired
by biological pattern formation phenomena. The orig-
inal idea is based on the Turing’s model of pattern for-
mation that is widely known in mathematical biology.
We first give the definition of DRDS as a discretized
reaction-diffusion system. We also present an applica-
tion of DRDS to fingerprint image restoration.

I. INTRODUCTION

Living organisms can create a remarkable variety of
patterns and forms from genetic information. In em-
bryology, the development of patterns and forms is
sometimes called “Morphogenesis”. In 1952, Alan Tur-
ing suggested that a system of chemical substances,
called morphogens, reacting together and diffusing
through a tissue, is adequate to account for the main
phenomena of morphogenesis [1]. Recently, model-
based studies of morphogenesis employing computer
simulations have begun to attract much attention in
mathematical biology. From an engineering point of
view, the insights into morphogenesis provide impor-
tant concepts for devising a new class of intelligent sig-
nal processing algorithms employing biological pattern
formation capability. Motivated by this viewpoint,
several examples of signal processing algorithms em-
ploying Turing’s system have been proposed [2]-[4].
In general, most of computational models of bio-
logical pattern formation are described by continuous-
time continuous-space reaction-diffusion equations,
and hence can not be directly handled by the theory of
digital signal processing. Addressing this problem, we
propose a Digital Reaction-Diffusion System (DRDS)
— a model of a discrete-time discrete-space reaction-
diffusion dynamical system, which is useful for design-
ing new types of signal processing algorithms based
on biological pattern formation mechanism [5]. Us-
ing the DRDS, mathematical models of morphogenesis
can be understood by multidimensional digital signal
processing theory. In this paper, we present the basic

framework of DRDS, and its application to fingerprint
image restoration.

II. DIGITAL REACTION-DIFFUSION
SYSTEM

This section defines a digital reaction-diffusion system
(DRDS) — a model of a discrete-time discrete-space
reaction-diffusion dynamical system having nonlinear
reaction kinetics. The general M-morphogen reaction-
diffusion system with two-dimensional (2-D) space in-
dices (ry,72) is written as
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diag: diagonal matrix,
D;: diffusion coefficient of the i-th morphogen.

We now sample a continuous variable & in (1) at the
time sampling interval Ty, and at the space sampling
intervals T} and T5. Assuming discrete time-index to
be given by ng and discrete space indices to be given
by (n1,n2), we have

m(no,nl,ng) = i(noTo,anl,nng). (2)
The general DRDS can be written as

z(no+1,n1,ns)

= x(ng,n1,n2)+R(x(ng,n1,n2))

+D(l * x)(ng,n1,n2), (3)
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R=TyR=[Ri(2),Rs(x), -, Ru(a)]",
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and x* is the spatial convolution operator defined as
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In this paper, we use the two-morphogen DRDS
(M = 2) with the Brusselator reaction kinetics, which
is one of the most widely studied chemical oscillator.
The Brusselator-based reaction kinetics for DRDS is
defined as
k1 — (k‘z + 1z + x%xg

R@) =T kyxzy — x%%

(4)
In this paper, we employ the parameter set: ky = 2,
kg = 47 TO = 00].7 D1 = 0.01 and D2 = 0.05.

III. ADAPTIVE DRDS FOR
FINGERPRINT RESTORATION

The DRDS with spatially isotropic diffusion terms has
produced some broken lines in processing fingerprint
images, since it does not take account of the local ori-
entation of ridge flow [5]. In order to solve this prob-
lem, this section presents an adaptive DRDS mod-
el, in which we can use the local orientation of the
ridge in the fingerprint image to guide the action of
DRDS. This can be realized by introducing orienta-
tion masks to be convolved with the diffusion terms.
A two-morphogen adaptive DRDS can be written as

m(no—}—l,nl,nz)
= x(ng,n1,ns2)+R(x(ng,n1,ns))
+D(h™"™ x| x x)(ng,n1,n2), (5)
where
R (ny, ng) =[R2 (01, m2), hy ™2 (01, m2)]T,
h"™2(ny,ng): orientation mask at the pixel
(my,ms) for the i-th morphogen,
(h™"™2 x| x ) (ng,n1,n2)
(Ry*™ * L% 21)(ng, M1, M2)
(3™ % | % x2)(ng, n1,M2)

We consider the problem of restoring the original
fingerprint images from blurred images by using adap-
tive DRDS. Let assume that a set of exact orientation
masks h™1"2(n1,ns) have already been obtained. In
this case, we can restore fingerprint images as follows.
We first store an initial (blurred) fingerprint image in
z1(0,m1,n2), at time 0. After computing the dynam-
ics for ng steps, we obtain the output image (restored
fingerprint) from 1 (ng,n1,n2). Assume that we use
the parameter set for the Brusselator reaction kinet-
ics described in the previous section. The dynamics
has the equilibrium (z1,22) = (2,2), and the varia-
tion ranges of variables (z1,x2) are bounded around
the equilibrium point as 1 <23 <3 and 1 <z < 3.
Hence, we first scale the [0,255] gray-scale fingerprint
image into [1,3] range. The scaled image becomes the
initial input z; (0, ny,n2), while the initial condition of
the 2nd morphogen is given by 22 (0,n1,n2) = 2 (equi-
librium). The zero-flux Neumann boundary condition
is employed for computing the dynamics. After ng
steps of DRDS computation, we obtain z (ng, ni, ns)
as the output image, which is scaled back into the
[0,255] gray-scale image to produce the final output.
Spatial sampling parameters 77 and 75 are adjusted
according to the inherent spatial frequency of original
fingerprints.

In practical situation, it is difficult to obtain exac-
t orientation masks from blurred fingerprint images.
Addressing this problem, we employ the hierarchical
procedure for adaptive DRDS processing as follows.

1. Partition an input image into 4 sub-images.

2. Generate four different orientation masks for
four sub-images, and run the adaptive DRDS for
no = 10 steps.

3. Carry out the same process increasing the num-
ber of image partitions as 9, 16, 36, 64 and 81.

4. Calculate orientation masks for every pixel, and
run the adaptive DRDS until ng = 500.

In the above process, we define the orientation mask
h"'"™2(n1,n2) at the pixel (mq,mz) as a 32 x 32 re-
al coefficient matrix having values within the window
(n1,n9) = (—16,—16) ~ (15,15), which can be au-
tomatically derived as follows (Figure 1): (i) Fourier
transform the local image around the pixel (mq,msz)
in terms of space indices (n1,n2), (i) extract the dom-
inant ridge orientation 6 from transformed image, (iii)
generate the mask pattern H{"'™?(jw,jws) having
the orientation € in frequency domain:

1 for unstable frequency band
(black pixels in Figure 1(iii))
2 otherwise,

H{™™ (jwr, jws) =

and (iv) taking the inverse Fourier transform to obtain
the orientation mask hi**™2(ni,ns). The orientation
mask h3*™2(nq,nq) for the second morphogen, on the
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Figure 1: Generation of the orientation mask.
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Figure 2: Fingerprint image restoration from 1/(4 x 4) subsampled image using adaptive DRDS.

Magnitude
Input Image 1 Complex Conjugate  Inverse
Fourier exp[j®] Multiply Fourier
Transform \ . Transform | 21 Correlation
. exp[j©- )] > ;
Magnitude mage
Input Image 2 < Correlation score
Fourier exp[jP] = sum of the highest 10 peaks
Transform in the correlation image

Figure 3: Computation flow of Phase-Only Correlation (POC).

other hand, has the value 1 at the center (ny,ns) =
(0,0), and equals to 0 for other coordinates (n1,ns).
Thus, the dynamics for the morphogen x2(ng,n1,n2)
does not take account of the local orientation.

IV. EXPERIMENTS AND DISCUSSIONS

In order to evaluate the restoration capability, we ap-
ply the adaptive DRDS to the problem of restoring
original fingerprints from subsampled fingerprint im-
ages. For this purpose, we generate a subsampled fin-
gerprint image from an original fingerprint image as
follows: (i) partition the original image into R x S-pixel
rectangular blocks, and (ii) select one pixel randomly
from every block and eliminate all the other pixels (set
127 to the pixels). The image thus obtained has the
same size as the original image, but the number of ef-
fective pixels is reduced to 1/(R x S). We use subsam-
pled images as input to adaptive DRDS. For example,
Figure 2 shows the restoration of a fingerprint image
from 1/(4 x 4) subsampled image.

The restoration capability of adaptive DRDS is e-
valuated by calculating the similarity between the o-

riginal fingerprint image and the restored image. As
a measure of similarity, we employ Phase-Only Cor-
relation (POC), which has an efficient discrimination
capability for fingerprint identification [6]. Figure 3
shows the computation flow of POC. In our experimen-
t, we use ten fingerprint images (Sample01-Samplel0)
with subsampling rates 1/(4 x 4) and 1/(5 x 5). Fig-
ure 4 shows the variation of correlation scores between
the original fingerprint image of Sample01 and the 10
images restored from 1/(4 x 4) subsampled images of
Sample01-Samplel0. We can confirm that the sim-
ilarity between the original Sample01 and the corre-
sponding restored image increases as the number of
steps ng increases. The optimal discrimination capa-
bility could be obtained around ng = 400. In the range
of ng = 200 ~ 300, the correlation scores for the wrong
fingerprints drop steeply while the correct fingerprint
keeps sufficient level of correlation.

Tables 1 and 2 summarize correlation scores (at
ng = 400) between original and restored images of
Sample01-Samplel0 for subsampling rates 1/(4 x 4)
and 1/(5 x 5), respectively. For both cases, auto-



Table 1: Correlation scores at ng = 400 (restoration from 1/(4 x 4) subsampled images)

Restored Image
Sample01 [Sample02 | Sample03 | Sample04 [ Sample05 | Sample06 | Sample07 | Sample08 | Sample09 | Sample10

Sample01 0.337 0.361 0.323 0.334 0.260 0.232 0.350 0.267
o Sample02 0.382 0.380 0.298 0.331 0.302 0.248 0.270 0.247
o | Sample03 || 0.334 0.361 0.333 0.324 0.309 0.275 0.269 0.263
E Sample04 || 0.319 0.271 0.289 0.286 0.329 0.245 0.267 0.258
— | Sample05 | 0.343 0.245 0.351 0.285 0.350 0.245 0.289 0.262
© | Sample06 || 0.320 0.264 0.299 0.365 0.321 0.285 0.247 0.272 0.257
‘D | Sample07 | 0.298 0.233 0.383 0.341 0.319 0.323 0.244 0.280 0.254
5 Sample08 || 0.286 0.239 0.305 0.310 0.283 0.273 0.246 0.258 0.244

Sample09 || 0.319 0.251 0.331 0.308 0.280 0.280 0.269 0.239

Sample10 || 0.242 0.219 0.273 0.306 0.281 0.262 0.242 0.204

Table 2: Correlation scores at ng = 400 (restoration from 1/(5 x 5) subsampled images)

Restored Image
Sample01 |Sample02 | Sample03 | Sample04 [ Sample05 [ Sample06 | Sample07 | Sample08 | Sample09 | Sample10
SampleO1 |JIOXZZI 0.224 | 0.318 [ 0.325 | 0.272 | 0.261 [ 0.283 | 0.247 | 0.311 [ 0.245
o Sample02 0.339 0.337 0.252 0.262 0.298 0.225 0.278 0.236
o | Sample03 || 0.303 0.340 0.273 0.323 0.333 0.260 0.281 0.251
E Sample04 || 0.324 0.234 0.293 0.313 0.332 0.235 0.284 0.249
= [Sample05 | 0322 | 0.221 | 0.292 0298 | 0352 | 0.249 | 0317 | 0.262
g Sample06 || 0.340 0.252 0.337 0.390 0.276 0.289 0.282 0.286 0.248
'S [ Sample07 || 0279 | 0234 | 0356 | 0.294 | 0275 | 0.256 0.222 | 0271 | 0.258
5 Sample08 || 0.282 0.206 0.303 0.267 0.230 0.270 0.269 0.242 0.246
Sample09 || 0.287 0.224 0.335 0.312 0.244 0.254 0.298 0.260
Sample10 | 0.254 | 0.207 | 0.302 | 0.319 | 0222 | 0246 | 0.249 | 0.229
paper also describes the design of an adaptive DRDS
—+Sample01  having the capability to reconstruct a complete finger-
- Sample02 print pattern from a blurred image. We are expecting
- Sample03 that the framework of DRDS may provide a theoreti-
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Figure 4: Correlation scores between the original im-
age of Sample01 and the restored images of Sample01—
Samplel0 (restoration from 1/(4 x 4) subsampled im-
ages).

correlation exhibits significantly higher scores than the
cross-correlation scores. These examples demonstrate
a potential capability of adaptive DRDS to enhance
the performance of matching algorithms for blurred
fingerprint images.

V. CONCLUSION

This paper presents a digital reaction-diffusion system
(DRDS) — a model of a discrete-time discrete-space
reaction-diffusion dynamical system — useful for signal
processing and computer graphics applications. This
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