
Similarity Measure Using Local Phase Features
and Its Application to Biometric Recognition

Shoichiro Aoyama, Koichi Ito, Takafumi Aoki
Graduate School of Information Sciences, Tohoku University

6-6-05, Aramaki Aza Aoba, Aoba-ku, Sendai-shi, 980-8579, Japan
aoyama@aoki.ecei.tohoku.ac.jp

Abstract

In the �eld of biometric recognition, similarity measure
using local features such as Gabor-based coding, Local Bi-
nary Patterns (LBP) and Scale Invariant Feature Transform
(SIFT) has been applied to various biometric recognition
problems. These features, however, may not always ex-
hibit higher recognition performance than the recognition
algorithms of the speci�c biometric trait. In this paper,
we propose a novel similarity measurement technique using
local phase features for biometric recognition. The phase
information obtained from 2D Discrete Fourier Transform
(DFT) of images exhibits good performance for evaluating
the similarity between images. The local phase features ex-
tracted from multi-scale image pyramids can handle non-
linear deformation of images. Through a set of experiments
in some biometric recognition such as face, palmprint and
�nger knuckle recognition, we demonstrate the ef�cient per-
formance and versatility of the proposed features compared
with the state-of-the-art conventional algorithms.

1. Introduction

Similarity measurement techniques based on local fea-
tures have been used in biometric recognition problems. In
the case of biometric recognition, the target to be recog-
nized is limited to the biometric trait. We can normalize
scale, rotation, translation, sometimes deformation and illu-
mination of images depending on the target biometric trait
in advance. Therefore, it is more important for local fea-
tures to include the inherent information of the target bio-
metric trait in order to measure the similarity between im-
ages.

Minutiae for �ngerprint recognition can be considered as
local features which consist of location, angle, type, etc. An
iriscode for iris recognition [8] and a palmcode for palm-
print recognition [28] are local features which are based on
binary codes obtained by binarizing an image after Gabor

�ltering. Recently, Local Binary Patterns (LBPs) have been
proposed [22] and been used as general-purpose local fea-
tures for biometric recognition [1]. Scale Invariant Feature
Transform (SIFT) [16], which is one of the famous local
features in the �eld of computer vision, has also been ap-
plied to many biometric recognition problems [4, 17, 6, 20].
The similarity between images is then evaluated by the dis-
tance between local features.

The Gabor-based coding method has exhibited good per-
formance in iris recognition [8] and in palmprint recogni-
tion [28]. The Gabor �lter extracts the inherent texture
information from images according to parameters of the
�lter kernel. Since the biometric traits have wrinkle pat-
terns such as �ngerprint, it is suitable for biometric recog-
nition to extract features by using the Gabor �lter opti-
mized to each biometric trait. Recently, improved versions
of Gabor-based method have been proposed and been ap-
plied to palmprint recognition [12, 33] and �nger knuckle
recognition [15, 31]. However, the recognition performance
of Gabor-based coding methods is signi�cantly dropped for
deformed images, since these methods assume that images
are completely aligned. Also, the parameters of Gabor �l-
ter have to be optimized depending on biometric traits and
environmental factors of image acquisition.

The LBP-based method has been receiving much atten-
tion since its effectiveness has been demonstrated in face
recognition [1]. LBP is obtained by thresholding neighbor-
hoods of each pixel with the center pixel value, and then
the histogram of LBPs is used as a texture descriptor. So
far, the improved versions of LBP-based method have been
proposed and been applied to various biometric recognition
problems [5, 21, 18, 14]. LBP has the versatility for image
matching since LBP dose not need any optimization pro-
cess. On the other hand, LBP cannot handle large defor-
mation of images and also may not exhibit the comparable
performance with the other methods speci�ed to each bio-
metric trait due to its versatility.

The SIFT-based method has been applied to �ngerprint
recognition [23], face recognition [4, 17], palmprint recog-
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nition [6] and �nger knuckle recognition [20]. Using the
property of SIFT such as robustness against geometric
transformation, the number of corresponding point pairs
can be used as similarity measure. On the other hand, for
low-quality images, the recognition performance of SIFT-
based methods may decrease, since SIFT keypoints ex-
tracted from low-quality images are sparse or partial.

Addressing the above problems, we consider to em-
ploy phase information obtained by Discrete Fourier Trans-
form (DFT) of images, which is successfully applied to
image matching tasks [26]. In particular, the phase-based
image matching for biometric recognition called Band-
Limited Phase-Only Correlation (BLPOC) has been pro-
posed [11] and been used in various biometric recognition
algorithms [9, 19, 29]. These algorithms cannot handle the
nonlinear deformation of images, since the phase informa-
tion obtained from the entire image is employed. To deal
with nonlinear deformation, the approach combined with
phase-based correspondence matching [27] and BLPOC
has been proposed [10, 2]. This approach improves the
recognition performance of biometric recognition, while the
phase-based correspondence matching method is designed
for computer vision problems and the large amount of data
has to be registered in the database compared with other lo-
cal features.

In this paper, we propose local phase features extracted
from each layer of multi-scale image pyramids, which are
designed speci�cally for biometric recognition. Using the
proposed local phase features, we can align the global trans-
lation between images in the top layer, align the minute
translation between local block images in the middle layer,
and �nally evaluate the similarity between local block im-
ages in the bottom layer. The amount of local phase features
can also be reduced by phase quantization without sacri�c-
ing the performance of biometric recognition. We evalu-
ate the performance and versatility of the proposed features
thorough a set of experiments in face recognition, palmprint
recognition and �nger knuckle recognition.

2. Local Phase Features
This section describes the hierarchical local phase fea-

tures proposed in this paper. We brie�y introduce the funda-
mentals of phase-based image matching [26, 11], and then
explain the details of the proposed local features.

2.1. Phase-Based Image Matching
We introduce the principle of a Phase-Only Correlation

(POC) function (which is sometimes called the “phase-
correlation function”) [13, 7, 26].

Consider two N1×N2 images, f(n1, n2) and g(n1, n2),
where we assume that the index ranges are n1 =
−M1, · · · ,M1 (M1 > 0) and n2 = −M2, · · · ,M2 (M2 >
0) for mathematical simplicity, and hence N1 = 2M1 + 1

andN2 = 2M2+1. The discussion could be easily general-
ized to non-negative index ranges with power-of-two image
size. Let F (k1, k2) and G(k1, k2) denote the 2D DFTs of
the two images. F (k1, k2) and G(k1, k2) are given by

F (k1, k2) =
∑
n1,n2

f(n1, n2)W
k1n1
N1

W k2n2
N2

= AF (k1, k2)e
jθF (k1,k2), (1)

G(k1, k2) =
∑
n1,n2

g(n1, n2)W
k1n1
N1

W k2n2
N2

= AG(k1, k2)e
jθG(k1,k2), (2)

where k1 = −M1, · · · ,M1, k2 = −M2, · · · ,M2,
WN1 = e

−j 2π
N1 , WN2 = e

−j 2π
N2 , and

∑
n1,n2

denotes∑M1

n1=−M1

∑M2

n2=−M2
. AF (k1, k2) and AG(k1, k2) are

amplitude components and θF (k1, k2) and θG(k1, k2) are
phase components. The normalized cross power spectrum
RFG(k1, k2) is given by

RFG(k1, k2) =
F (k1, k2)G(k1, k2)∣∣∣F (k1, k2)G(k1, k2)

∣∣∣
= ejθ(k1,k2), (3)

where G(k1, k2) is the complex conjugate of G(k1, k2)
and θ(k1, k2) denotes the phase difference θF (k1, k2) −
θG(k1, k2). The POC function rfg(n1, n2) is the 2D In-
verse DFT (2D IDFT) of RFG(k1, k2) and is given by

rfg(n1, n2) =
1

N1N2

∑
k1,k2

RFG(k1, k2)W
−k1n1
N1

W−k2n2
N2

,

(4)
where

∑
k1,k2

denotes
∑M1

k1=−M1

∑M2

k2=−M2
. When two

images are similar, their POC function gives a distinct sharp
peak. When two images are not similar, the peak drops sig-
ni�cantly. The height of the peak gives a good similarity
measure for image matching, and the location of the peak
shows the translational displacement between the images.

We have also proposed a BLPOC (Band-Limited Phase-
Only Correlation) function [11] dedicated to biometric au-
thentication tasks. The idea to improve the matching per-
formance is to eliminate meaningless high frequency com-
ponents in the calculation of normalized cross power spec-
trum RFG depending on the inherent frequency compo-
nents of images. Assume that the ranges of the inher-
ent frequency band are given by k1 = −K1, · · · ,K1 and
k2 = −K2, · · · ,K2, where 0≤K1≤M1 and 0≤K2≤M2.
Thus, the effective size of frequency spectrum is given by
L1 = 2K1 +1 and L2 = 2K2 +1. The BLPOC function is
given by

rK1K2

fg (n1, n2) =
1

L1L2

∑
k1,k2

′
RFG(k1, k2)W

−k1n1
L1

W−k2n2
L2

,

(5)
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Figure 1. Flow diagram of biometric recognition system.

where n1 = −K1, · · · ,K1, n2 = −K2, · · · ,K2, and∑′
k1,k2

denotes
∑K1

k1=−K1

∑K2

k2=−K2
. Note that the maxi-

mum value of the correlation peak of the BLPOC function is
always normalized to 1 and does not depend on L 1 and L2.

2.2. Local Phase Features
Fig. 1 shows the general �ow diagram of the biometric

recognition system. In the preprocessing process, the po-
sition and illumination of images are often normalized ac-
cording to type of the biometric trait. For example, in the
case of face recognition, we detect the face region, extract
feature points such as eyes, nose, mouth, etc., and then nor-
malize the position of the face according to feature points.
In the case of iris recognition, we detect the inner boundary
between the iris and pupil and the outer boundary between
the iris and sclera, and then unwrap the iris region to a nor-
malized rectangular block of a �xed size using polar coor-
dinate transformation. In the case of palmprint recognition,
we extract the palm region of the �xed size from the hand
image based on the location of the bottom of gaps between
index and middle �ngers and between ring and little �ngers.
Although the global transformation of the image can be nor-
malized by the preprocessing process mentioned above, the
nonlinear deformation inherent in each biometric trait may
still remain. In order to achieve reliable biometric recogni-
tion, we have to extract features which can handle nonlinear
deformation.

We employ local phase features extracted from multi-
scale image pyramids. Hierarchical features extracted from
the registered image allow us to �nd corresponding local
block images in the input image even for deformed im-
ages, since the nonlinear deformation is approximately rep-
resented by the minute translational displacement between
local blocks. The fundamental algorithm has been proposed
in Ref. [27]. This algorithm is designed for applications
of computer vision to �nd correspondence between images
with sub-pixel accuracy, and hence it is not always suitable
for biometric recognition. In order to dedicate the hierar-
chical correspondence matching to biometric recognition,
we employ 3 image layers with BLPOC-based local block
matching as shown in Fig. 2. In the top layer, the global
translation is aligned using the entire images. The images
obtained after preprocessing may not be completely nor-
malized, and hence may have global translation. In order to
improve the accuracy of local block matching, we have to

I1

p1 =     p0 / 2

I2 J2

J1

q1 = p1 + 2 δglobal

I0 J0

p0 = ( p0,1, p0,2)

BLPOC

BLPOC

δglobal

δlocal

BLPOC

α

w1

w2

w1

w2

Global registration

Local registration

Similarity evaluation

q0 = 2 (q1 + δlocal)

Figure 2. Hierarchical local block matching using BLPOC for bio-
metric recognition.

align the global translational displacement in the top layer.
In the middle layer, the local translation is aligned using the
local block images. Focusing on local regions, image trans-
formation such as scale, rotation, translation and nonlinear
deformation can be considered as minute translations. By
aligning local translation in this layer, we can handle non-
linear deformation of images. And �nally, in the bottom (or
original image) layer, the similarity between local blocks is
evaluated by BLPOC.

The followings are detailed procedure for feature extrac-
tion and matching of hierarchical local phase features.

2.2.1 Feature Extraction

The hierarchical local phase features consist of the phase
feature of the entire image in the top layer and local phase
features of local block images in the middle and bottom lay-
ers. Local phase features in the middle and bottom layers
are extracted according to the position of reference points.
Fig. 3 shows an example of hierarchical local phase features
extracted from an �nger knuckle image. The feature extrac-
tion step consists of (i) reference point placement, (ii) hier-
archical image generation and (iii) phase feature extraction.
(i) Reference point placement

The reference points are the center coordinate of each lo-
cal phase feature. In this paper, we set the reference points
in a reticular pattern. In the following, let the reference
points be p = (p1, p2) (= p0) and the registered image
be I (= I0), respectively.
(ii) Hierarchical image generation

For l = 1, 2, we generate the l-th layer images I l(n1, n2)
as follows:

I l(n1, n2) =
1

4

1∑
i1=0

1∑
i2=0

I l−1(2n1 + i1, 2n2 + i2). (6)
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Hierarchical image Extracted features

Figure 3. Example of feature extraction from a �nger knuckle im-
age, where “•” indicates the reference point.

Also, we calculate the coordinate p1 = (p11, p
1
2) corre-

sponding to p0 on I1(n1, n2) as follows:

p1 =

⌊
1

2
p0
⌋

=

(⌊
1

2
p01

⌋
,

⌊
1

2
p02

⌋)
. (7)

(iii) Phase feature extraction
In the top layer, we calculate 2D DFT of I 2 and its

phase components. In the middle and bottom layers, we
extract w1 × w2-pixel local block images with its center
on p1 and p0 from I1 and I0, respectively. Then, we cal-
culate 2D DFTs of all the local image blocks and their
phase components. To reduce the size of hierarchical lo-
cal phase features, we can eliminate the meaningless high
frequency components which are not required for calculat-
ing the BLPOC function. We also reduce the size of phase
information based on the symmetry property of DFT.
(iv) Phase quantization

A phase component φ(k1, k2) is generally represented
by the real value between−π and π. If the real-valued local
phase features are stored into the database, the recognition
system have to keep a large amount of registered data. To
address the above problem, we reduce the amount of reg-
istered data by phase quantization. In this paper, we con-
sider 4 types of phase quantization as shown in Fig. 4. Note
that we select the range of quantization so that ejφ(k1,k2)
is always represented by the complex value, since we em-
pirically con�rm that the recognition performance is signif-
icantly dropped when ejφ(k1,k2) is represented only by the
real value.

2.2.2 Matching

The matching step consists of (i) hierarchical image gen-
eration of the input image, (ii) global image registration in
the top layer, (iii) local image block registration in the mid-
dle layer, (iv) similarity evaluation in the bottom layer and
(v) matching score calculation. Fig. 5 shows an example of
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Figure 4. Range of phase quantization used in this paper: (a) 4 bit,
(b) 3 bit, (c) 2 bit and (d) 1 bit

matching between hierarchical local phase features in Fig. 3
and the input �nger knuckle image.
(i) Hierarchical image generation of the input image

Let J (= J0) be the input image and q = (q1, q2) (=
q0) be the corresponding points, respectively. For l = 1, 2,
we generate the l-th layer images J l(n1, n2) as follows:

J l(n1, n2) =
1

4

1∑
i1=0

1∑
i2=0

J l−1(2n1 + i1, 2n2 + i2). (8)

(ii) Global image registration in the top layer
In the top layer, we estimate the translational displace-

ment between I2 and J2 using BLPOC. We denote the esti-
mated global translations as δglobal = (δglobal,1, δglobal,2).
(iii) Local image block registration in the middle layer

In the middle layer, we estimate the translational dis-
placement between local block images of I 1 and J1. We
extract the w1 × w2-pixel image blocks with its center on
q1 = p1 + 2δglobal from J1. Using BLPOC for each lo-
cal block image pair of I 1 and J1, we estimate the local
translations δlocal.
(iv) Similarity evaluation in the bottom layer

We evaluate the similarity between each local block im-
age pair in the bottom layer. We extract the w1 × w2-pixel
local block images with its center on q0 = 2(q1 + δlocal)
from J0. Then, we calculate the BLPOC function between
each local block image pair of I 0 and J0 and obtain the
correlation peak value α.
(v) Matching score calculation

We evaluate the matching score between I and J accord-
ing to the correlation peak values obtained in the step (iv).
In this paper, we employ the matching score S de�ned by

S =
Nthreshold

Nblock
, (9)

where Nthreshold is the number of local image block pairs
which peak values are higher than threshold th, and Nblock

is the number of local image block pairs.

3. Experiments and Discussion
In this section, we evaluate the performance of the

proposed local features through a set of experiments in
face recognition, palmprint recognition and �nger knuckle
recognition.
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Figure 5. Example of matching between hierarchical local phase
features in Fig. 3 and the input �nger knuckle image.

(a) (b)

Figure 6. Example of a face image in FERET database: (a) original
image and (b) the image after preprocessing, where “•” indicates
the reference point for extracting a hierarchical local phase feature.

3.1. Face Recognition

To evaluate the performance in face recognition, we em-
ploy the CSU Face Identi�cation Evaluation System [3]
with the FERET database [24], where the recognition per-
formance is evaluated by the Cumulative Match Character-
istic (CMC) curve and the recognition rates of genuine pairs
at rank 1. The FERET database contains 3,541 face images
of 1,196 subjects. Fig. 6 shows an example of a face image
and its normalized one. The images in the FERET database
are organized into a gallery set fa and 4 probe sets such as
fb, fc, dup1 and dup2. The images in fa and fb set were
taken in the same session with the same camera and illumi-
nation condition, but with different expression. The images
in fc set were taken in the same session using the different
camera and lighting. The images in dup1 set were taken
later in time. The images in dup2 set which is a subset
of dup1 set were taken at least a year. Using the FERET
database, we perform 4 experiments denoted by fafb, fafc,
dup1 and dup2. The parameters of the proposed algorithm
are w1 = w2 = 48, K1/M1 = K2/M2 = 0.5, th = 0.4
andNblock = 127.

In the experiment, we compare 3 local features:

Table 1. Recognition rates of genuine pairs at rank 1 [%]
Algorithm fafb fafc dup1 dup2
SIFT [17] 97 47 61 53
LBP (nonweighted) [1] 93 51 61 50
LBP (weighted) [1] 97 79 66 64
Proposed 99 100 88 89
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w/o quantization
4 bit quantization
3 bit quantization
2 bit quantization
1 bit quantization (th = 0.4)
1 bit quantization (th = 0.3)

w/o quantization
4 bit quantization
3 bit quantization
2 bit quantization
1 bit quantization (th = 0.4)
1 bit quantization (th = 0.3)

w/o quantization
4 bit quantization
3 bit quantization
2 bit quantization
1 bit quantization (th = 0.4)
1 bit quantization (th = 0.3)

w/o quantization
4 bit quantization
3 bit quantization
2 bit quantization
1 bit quantization (th = 0.4)
1 bit quantization (th = 0.3)

Figure 7. CMC curves for each quantization level using FERET
database.

Table 2. Recognition rates of genuine pairs at rank 1 [%]
Quantization level fafb fafc dup1 dup2
w/o 99 100 88 89
4 bit 99 99 88 88
3 bit 99 100 88 88
2 bit 99 99 86 87
1 bit (th = 0.4) 96 91 60 55
1 bit (th = 0.3) 99 99 84 85

SIFT [17], LBP [1] and the proposed local phase feature.
Table 1 shows the recognition rate of genuine pairs at rank 1
for each local feature. The proposed method exhibits higher
recognition rate than conventional methods for all the cases.

We evaluate the impact of phase quantization in face
recognition. Fig. 7 and Table 2 show CMC curves and the
recognition rate of genuine pairs at rank 1 for the proposed
method with and without phase quantization, respectively.
In the case of 1-bit quantization, we compare 2 different
thresholds th: one is the same as other quantization levels
and the other one is lower. The recognition performance of
the proposed method with phase quantization is comparable
with that without phase quantization even for 1-bit phase
quantization.
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(a) 

(b) 
Figure 8. Example of a palmprint image in the database, where
left is an original image and right is a normalized image and “•”
on normalized image indicates reference point for extracting a hi-
erarchical local phase features: (a) PolyU Palmprint database and
(b) CASIA Palmprint database.

3.2. Palmprint Recognition

To evaluate the performance of palmprint recognition,
we employ two palmprint databases: PolyU Palmprint
database 1 and CASIA Palmprint database 2. The PolyU
Palmprint database consists of 7,752 contact palmprint im-
ages with 386 subjects. The number of genuine pairs is
74,068, while the number of imposter pairs is 29,968,808.
The palmprint images in PolyU have only minute displace-
ment since a hand is �xed on a system during the image
acquisition as shown in Fig. 8 (a). The CASIA Palm-
print database consists of 5,239 contactless palmprint im-
ages with left and right palm of 301 subjects. The num-
ber of genuine pairs is 20,584, while the number of im-
poster pairs is 13,700,357. The palmprint images in CA-
SIA are deformed due to the contactless image acquisition
as shown in Fig. 8 (b). We obtain the normalized palm-
print images from all the images using the similar method
described in Ref. [28] in advance, where the size of nor-
malized images is 160 × 160 pixels. In this paper, the pa-
rameters of the proposed algorithm are w1 = w2 = 48,
K1/M1 = K2/M2 = 0.5, th = 0.3 and Nblock = 100 as
shown in Fig. 8.

We compare 4 local features: Competitive Code (Com-
pCode) [12], Ordinal Code (OrdiCode) [25], Sparse Mul-
tiscale Competitive Code (SMCC) [33] and the proposed
local phase feature. The recognition performance is eval-
uated by the Equal Error Rate (EER), which is de�ned as

1http://www4.comp.polyu.edu.hk/˜biometrics/
2http://www.cbsr.ia.ac.cn/english/PalmprintData
bases.asp

Table 3. EERs [%] for palmprint recognition
Algorithm PolyU CASIA
CompCode [33] 0.038 0.55
Ordinal Code [33] 0.104 0.84
SMCC [33] 0.014 0.48
Proposed 3.34× 10−6 0.07
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Figure 9. ROC curves for each quantization level: (a) PolyU and
(b) CASIA.

Table 4. EERs [%] of each quantization level.
Quantization level PolyU CASIA
w/o 3.34× 10−6 0.0656
4 bit 5.00× 10−6 0.0695
3 bit 0.0011 0.0669
2 bit 0.0021 0.0822
1 bit (th = 0.3) 0.0272 0.1821
1 bit (th = 0.2) 0.0013 0.0866

the error rate where the False Reject Rate (FRR) and False
Accept Rate (FAR) are equal. Table 3 shows the summary
of EERs for each method, where the EERs for the con-
ventional algorithms are referred from Ref. [33]. As for
PolyU, SMCC and the proposed method exhibit higher per-
formance than other methods. As for CASIA, although the
palmprint images in CASIA are deformed due to the con-
tactless image acquisition, the performance of the proposed
method is higher than all the other methods.

We evaluate the impact of phase quantization in palm-
print recognition. Fig. 9 and Table 4 show ROC curves
and EERs for the proposed method with and without phase
quantization, respectively. As is the case in face recogni-
tion, the recognition performance of the proposed method
with phase quantization is comparable with that without
phase quantization even for 1-bit phase quantization.

3.3. Finger Knuckle Recognition

To evaluate the performance in �nger knuckle recogni-
tion, we employ the PolyU FKP database 3. The PolyU
FKP database consists of 7,920 images with 165 subjects

3http://www4.comp.polyu.edu.hk/˜biometrics/
FKP.htm
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(a) (b)

Figure 10. Example of a �nger knuckle image in the PolyU FKP
database: (a) original image and (b) normalized image, where
“•” indicates the reference point for extracting a hierarchical lo-
cal phase feature.

Table 5. EERs [%] for �nger knuckle recognition.
Algorithm EER [%]
CompCode [32] 1.676
LGIC [32] 0.402
LGIC2 [30] 0.358
Proposed 0.278

and 6 different images for each of the left index �nger, the
left middle �nger, the right index �nger and the right mid-
dle �nger in 2 separate sessions. In the experiment, the
images in the �rst session belong to the gallery set, while
the images in the second session belong to the probe set,
where each session consists of 660 (165 × 4) classes and
3,960 (660 × 6) images. The number of genuine pairs is
23,760 while the number of imposter pairs is 15,657,840
for this database. The PolyU FKP database provides the
normalized �nger knuckle images with 220 × 110 pixels.
In the following experiments, we use the normalized �n-
ger knuckle images available in the database to evaluate the
recognition performance. Fig. 10 shows an example of a
�nger knuckle image and its normalized one in the PolyU
FKP database. The parameters of the proposed algorithm
are w1 = w2 = 48, K1/M1 = K2/M2 = 1 in the top
layer, K1/M1 = K2/M2 = 0.5 in other layers, th = 0.3
andNblock = 90.

We compare 4 local features: CompCode [31], Local-
Global Information Combination (LGIC) [32], LGIC2 [30]
and the proposed feature. The recognition performance is
also evaluated by EER. Table 3 shows the summary of EERs
for each method, where the EERs for the conventional al-
gorithms are referred from Refs. [32, 30]. As a result, the
proposed algorithm exhibits higher performance than all the
other methods.

We evaluate the impact of phase quantization in �nger
knuckle recognition. Fig. 11 and Table 6 show ROC curves
and EERs for the proposed method with and without phase
quantization, respectively. As is the case in face and palm-
print recognition, the recognition performance of the pro-
posed method with phase quantization is comparable with
that without phase quantization.
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Figure 11. ROC curves for each quantization level.

Table 6. EERs [%] of each quantization level.
Quantization level EER [%]
w/o 0.278
4 bit 0.235
3 bit 0.220
2 bit 0.208
1 bit (th = 0.3) 0.543
1 bit (th = 0.2) 0.352

Through a set of experiments for face recognition,
palmprint recognition and �nger knuckle recognition, we
demonstrate that the hierarchical local phase features with
phase quantization exhibit the ef�cient recognition perfor-
mance and high versatility for biometric recognition.

3.4. Computation Time

The computation time of the proposed algorithm is eval-
uated by using MATLAB 7.14.0 (single thread use) on Intel
Xeon X5690 (3.46 GHz). The computation time of feature
extraction and matching is about 40∼60 msec. and about
70∼90 msec., respectively.

4. Conclusion
This paper has proposed the novel similarity measure

technique using local phase features for biometric recog-
nition. Through a set of experiments for face, palmprint
and �nger knuckle recognition, the proposed features ex-
hibits ef�cient performance compared with the state-of-the-
art conventional recognition algorithms. In future, we will
apply the local phase features to other biometric traits and
evaluate the versatility of local phase features. Also we will
develop multibiometric systems based on local phase fea-
tures and demonstrate the effectiveness of local phase fea-
tures in multibiometric recognition problems.
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