IEICE Electronics Express, Vol.2, No.17, 465-470

A compact cluster computer
with embedded CPUs and its
application to rapid
prototyping of fingerprint
verification system

Yoshifumi Sasaki'®, Koichi Ito?, Takafumi Aoki?,

and Tatsuo Higuchi?

Y Faculty of Science and Engineering, Ishinomaki Senshu University

1 Shinmito, Minamisakai, Ishinomaki, Miyagi 986—8580, Japan

2 Graduate School of Information Sciences, Tohoku University

05 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan

3 Faculty of Engineering, Tohoku Institute of Technology

35—1 Kasumi-cho, Yagiyama, Taihaku-ku, Sendai, Miyagi 982—-8577, Japan

a) sasakiy@isenshu-u.ac.jp

Abstract: This paper presents a compact cluster computer, called
“UCC (Ubiquitous Computing Cluster)”, which provides a cost-effec-
tive prototyping environment for design and test of ubiquitous comput-
ing applications. We achieve extremely small size, low power consump-
tion and low cost by employing COTS (Commercial Off-The-Shelf)
embedded CPUs. We also present an application of UCC to finger-
print verification using phase-based image matching and its perfor-
mance analysis. Our experimental observation shows that the cluster
is useful for prototyping practical application programs targeted at
network-connected embedded CPUs.

Keywords: ubiquitous computing, parallel processing, parallel
computers, cluster computers, fingerprint verification
Classification: Science and engineering for electronics

References

[1] M. Weiser, “Some Computer Science Issues in Ubiquitous Computing,”
Comm. ACM, vol. 36, no. 7, pp. 75-84, 1993.

[2] Inrevium Web Site. http://www.inrevium.jp/board/ubqgcc.html

[3] Ubiquitous Computing Cluster Support Page.
http://www.aoki.ecei.tohoku.ac.jp/UCC/index.htm

[4] K. Tto, H. Nakajima, K. Kobayashi, T. Aoki, and T. Higuchi, “A fin-
gerprint matching algorithm using phase-only correlation,” IEICE Trans.
Fundamentals, vol. E87-A, no. 3, pp. 682-691, 2004.

[5] K. Ito, A. Morita, T. Aoki, T. Higuchi, H. Nakajima, and K. Kobayashi,
“A Fingerprint Verification Algorithm Using Phase-Based Image Match-
ing for Low-Quality Fingerprints,” Int. Conf. on Image Processing (to be
published).

465




IEICE Electronics Express, Vol.2, No.17, 465-470

[6] debian.dodes.org. http://debian.dodes.org/index.en.html
[7] LAM/MPI Parallel Computing. http://www.lam-mpi.org/
[8] Pallas MPI Benchmark.
http://www.pallas.com/e/products/pmb/
[9] FFTW (Fastest Fourier Transform in the West). http://www.{ftw.org/

1 Introduction

Today, embedded CPUs can be found in a vast variety of products rang-
ing from cellular phones and automobile navigation systems up to network-
connected household appliances. Some of these embedded devices can run
advanced operating systems, such as Linux, to support flexible network con-
nectivity. This trend accelerates the technology toward the age of “ubiquitous
computing”, that is to integrate computation into the environment enabling
people to interact with computers more naturally [1]. In such situation, coop-
erative parallel processing with embedded CPUs will become one of the most
important technologies to realize a variety of pervasive applications. One
of the problems in managing research and development projects for ubiqui-
tous/pervasive computing is the lack of cost-effective standardized platform
for prototyping application programs on network-connected embedded CPUs.

Addressing this problem, we present a compact cluster computer with
embedded CPUs, called a “Ubiquitous Computing Cluster (UCC)” (see the
URL [2, 3] for detail), which provides a rapid prototyping environment for
ubiquitous computing applications at very low cost. We utilize a Commercial
Off-The-Shelf (COTS) product of Network Attached Storage (NAS) as a
computing node for UCC to realize cost-effective prototyping environment.

In this paper, we describe the system overview of UCC, and its applica-
tion to the rapid prototyping of a parallel processing algorithm for finger-
print verification, where the algorithm uses phase-based fingerprint image
matching [4, 5]. Although the actual performance of the fingerprint match-
ing depends on the target CPUs and peripheral components, the use of UCC
as a typical hardware platform makes possible to verify functionality of the
algorithm itself and to obtain a rough estimate of its performance depend-
ing on the degree of parallelism. UCC is also useful for software engineering
education as an easy-to-use platform for teaching fundamental concepts on
embedded computers and parallel processing.

2 System overview

Fig. 1(a) shows the overall architecture of UCC. It consists of four com-
puting nodes #0, #1, #2 and #3, where the node #0 works as a server
node and is directly accessible from terminals outside. These computing
nodes are connected over 100 Mbps Fast Ethernet. We decided to use COTS
products in constructing UCC to achieve the cost-effective prototyping envi-
ronment. A Network Attached Storage (NAS), whose specification is given
in Fig. 1 (c), is employed as a computing node. Every computing node runs

466



IEICE Electronics Express, Vol.2, No.17, 465-470

Debian/GNU Linux 2.4.21 configured for SH4 [6]. The server node #0 pro-
vides NIS and NFS services for managing login IDs and sharing user files.
Telnet and FTP services are also supported to allow login and file transfer
from outside. Fig. 1 (b) shows a product picture of UCC. The four comput-
ing nodes and a network HUB are mounted together in a small skeleton rack.
We could achieve extremely compact size of 390 mm x 280 mm x 150 mm, low
power consumption of 60 W and low cost by employing COTS products.

100Mbps Fast Ethernet HUB

Computing#6des

O# SPON

{apou 124153

switch 7

Computing node CPU SH7751R (SH4), 266 MHz

(Embedded NAS) Main memory | SDRAM, 64 MB
HDD ATA133, 5400 rpm, 120 GB
Network I/F 10/100 Base-T Fast Ethernet
USB I/F USB 2.0, 2 ports

Number of nodes 4

Network switch 10/100 Base-T Fast Ethernet switching HUB

Size [mm)] W390 x D280 x H150

Power consumption 60W

(c)
Fig. 1. System overview of UCC: (a) architecture, (b)
product picture, and (c) overall specification.

UCC has the following features as a reference hardware platform for pro-
totyping application programs for network-connected embedded CPUs.

e UCC supports a variety of development tools and libraries for parallel
programming including GNU C,; C++ compilers, vi, GNU Emacs edi-
tors, PVM (Parallel Virtual Machine), and message passing interfaces
LAM/MPI [7] and MPICH.

e UCC provides a large capacity of storage (about 100 GB per node) for
system libraries, user programs and data.

e UCC has enough point-to-point communication bandwidth for practical
applications. The bandwidth is evaluated as 50 Mbps by Pallas MPI
Benchmark (PMB) [8].

e Multiple UCCs can be easily stacked to extend the number of comput-
ing nodes.

e Each computing node has a dual-port USB interface, which enables us
to extend UCC to various applications with real-world interface devices.

467



IEICE Electronics Express, Vol.2, No.17, 465-470

3 Rapid prototyping of fingerprint verification system

This section describes an application example of UCC — the prototyping of
fingerprint verification software targeted at embedded CPUs. We employ
two UCCs with a pressure sensitive fingerprint sensor connected to a USB
port. The purpose of this case study is to find an efficient implementation
of the verification algorithm (proposed by the authors in [4, 5]) for typical
embedded applications.

The fingerprint verification algorithm considered here employs phase-
based image matching using the Band-Limited Phase-Only Correlation (BL
POC) function [4, 5]. The use of phase components in 2D DFTs (two-
dimensional discrete Fourier transforms) of fingerprint images makes pos-
sible to achieve highly robust fingerprint verification even for low-quality
images. Experimental evaluation reported in [4, 5] demonstrates an efficient
verification performance of the proposed algorithm compared with a typical
minutiae-based algorithm.

A major drawback of this algorithm is its computation cost due to the
use of 2D DFTs for phase-based image matching. In order to realize real-
time verification on typical embedded CPUs, we need to reduce computation
time significantly, while maintaining a sufficient level of verification perfor-
mance. In this case study, we use UCCs to analyze the possibility of creating
an efficient fingerprint verification system, which combines the phase-based
matching algorithm with embedded parallel processing.

We consider here the following two approaches to reduce the computation
time of phase-based fingerprint matching;:

Reducing the image size

The original algorithm assumes the use of 256 x 256-pixel fingerprint
images. In this case, computation of 2D DFT on the embedded CPU (SH4
266 MHz used in UCC) takes almost one second. This is not allowed with
respect to real-time processing since the original algorithm requires more
than 100 times computation of 2D DFTs per a single verification task. Our
experimental observation shows that we can reduce the image size to 128 x 128
pixels without considerable degradation of verification performance.
Simplifying the algorithm

Let f be the input fingerprint image to be verified and g be the registered
fingerprint image. We generate a set of rotated replicas gg of g over the
angular range —40° < 6 < 40° with an angle spacing 1° in advance. We
modify the original algorithm to reduce the verification time and to enhance
the efficiency in parallel processing on UCCs as follows:

Step 1] Capture an input image f.
Step 2] Calculate the 2D DFT of f.
Step 3] Calculate the phase spectrum of f.

[
[
[
[Step 4] Calculate the cross-phase spectrum between f and gy for all 6.
[Step 5] Calculate the BLPOC function between f and gy for all 6.

[

Step 6] Calculate the matching score between f and gy for all 6.

468



IEICE Electronics Express, Vol.2, No.17, 465-470

[Step 7] Find the highest matching score for verification.

We analyze the verification performance of the simplified algorithm. The
fingerprint image database used in our experiment consists of impressions
obtained from 30 subjects having low quality fingerprints [4]. We capture
11 impressions of the right index finger for every subject. Thus, the total
number of fingerprint images used in this experiment is 330. We compare
three matching algorithms: (A) the original algorithm [4, 5], (B) the sim-
plified algorithm, and (C) a typical minutiae-based algorithm. The perfor-
mance is evaluated by the Equal Error Rate (EER) in fingerprint recognition.
Note that EER is defined as the error rate where the False Non-Match Rate
(FNMR) and the False Match Rate (FMR) are equal.

Table I(a) shows the EER for the three algorithms. The EER of the
simplified algorithm (B) is 2.80%, while the EER of the original algorithm
(A) is 1.95%. Thus, the performance degradation due to the algorithm sim-
plification is not so significant. Even after simplification, the verification
performance is much better than typical minutiae-based algorithm (4.81%).

Table I. Verification performance and computation time
evaluated on a single node of UCC.

(a) Comparison of EER and overall computation time for the three algorithms.

Algorithm EER [%] | Overall CPU time
on UCC [sec]
Original algorithm (A) 1.95 300
Simplified algorithm (B) 2.80 14
Minutiae-based algorithm (C) 4.81 -
(b) CPU time profiling for the simplified algorithm (B).
Algorithm steps Actual CPU time
on UCC [sec]
S | Step 1: Capture an input image 0.124000
S | Step 2: Calculate the 2D DFT of the input image 0.175000
S | Step 3: Calculate the phase of the input image 0.050000
P | Step 4: Calculate the cross-phase spectrum for all 0 2.464000
P | Step 5: Calculate the BLPOC function for all 8 11.146000
P | Step 6: Calculate the matching scores for all 6 0.076000
S | Step 7: Find the highest matching score 0.000001
Overall CPU time 14.035000

We implemented both the original algorithm (A) and the simplified algo-
rithm (B) on a single node (SH4 266 MHz) of UCC, where FFTW library [9]
— a C subroutine library for computing DFT — are used to accelerate com-
putation. On a single node of UCC, the original algorithm (A) consumes
about 5 minutes while the simplified algorithm (B) takes only 14 seconds as
listed in Table I(a). Thus, the simplified algorithm (B) has a potential to
support real-time verification through parallel processing on multiple CPUs.
Table I(b) shows the actual CPU time for each algorithm step. The sym-
bol 'P’ denotes the steps that can be effectively parallelized since they are

469



IEICE Electronics Express, Vol.2, No.17, 465-470

repeated for 81 independent rotated replicas of the registered image.

We implemented the parallelized version of the simplified algorithm (B)
on the 8-node cluster system using two UCCs. The parallel program can be
summarized as follows: (i) the server node #0 computes the phase component
of the input image (Step 1-3), while the other nodes wait for the completion
of the computation, (ii) the node #0 broadcasts the phase component by
MPI_Bcast function of LAM/MPI library, (iii) each node receives this and
computes the cross-phase spectrum, the BLPOC function and the matching
score between the input image f and the rotated replica gy of the registered
image (Step 4-6), and (iv) the node #0 collects the matching scores to find
the highest score (Step 7) using M PI_Reduce function with MPI_MAX
operation. Fig. 2 plots actual computation time and speed-up factor with
different number of computing nodes. The dashed line denotes estimated
computation time given by the formula: ¢ = tg + twp, where the sequential
segment tg and the parallel segment tp are evaluated as tg = 0.350 [sec]
and tp = 13.686 [sec], respectively. The actual computation time is almost
consistent with the estimated computation time considering the overhead of
MPI functions. When the number of node is 8, the actual computation time
is 2.49 seconds, which clearly suggests the possibility of real-time verification
with network-connected embedded CPUs.

16 1 O Actual computation time 17
<14 Y ---Estimated computation time 4
o L 2 6
2, ¢ Speed-up factor TS .
) 12 15 Q
£ M 9
=10 \ . | &
= . 4 o
2 8 r | . )
= .. : =
s 6T 3 3
a. .. i a,
g 4 r ¢ 0. O 2 w»
_______ 0
© 2 F * -0 a4 1
0 0
1 2 3 4 5 6 7 8
Number of computing nodes

Fig. 2. Computation time and speed-up factor of paral-
lelized algorithm.

4 Conclusions

This paper presented a compact cluster computer with embedded CPUs and
its application to rapid prototyping of a high-performance fingerprint ver-
ification system. Although real-time performance depends on the details
of hardware implementation, an easy-to-use platform for embedded parallel
processing allows us to capture the fundamental characteristics of software
designs for embedded applications.

470



