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Abstract— A major approach for fingerprint recognition today is
to extract minutiae from fingerprint images and to perform finger-
print matching based on the number of corresponding minutiae
pairings. One of the most difficult problems in fingerprint recog-
nition has been that the recognition performance is significantly
influenced by fingertip surface condition, which may vary depend-
ing on environmental or personal causes. Addressing this prob-
lem, this paper presents a fingerprint recognition algorithm using
phase-based image matching. The use of phase components in
2D (two-dimensional) discrete Fourier transforms of fingerprint
images makes possible to achieve highly robust fingerprint recog-
nition for low-quality fingerprints. Experimental evaluation using
a set of fingerprint images captured from fingertips with difficult
conditions (e.g., dry fingertips, rough fingertips, allergic-skin fin-
gertips) demonstrates an efficient recognition performance of the
proposed algorithm compared with a typical minutiae-based algo-
rithm.

I. INTRODUCTION

Biometric authentication has been receiving extensive attention
over the past decade with increasing demands in automated
personal identification. Biometrics is to identify individuals us-
ing physiological or behavioral characteristics, such as finger-
print, face, iris, retina, palm-print, etc. Among all the biomet-
ric techniques, fingerprint recognition [1] is the most popular
method and is successfully used in many applications.

Typical fingerprint recognition methods employ feature-based
image matching, where minutiae (i.e., ridge ending and ridge
bifurcation) are extracted from the registered fingerprint image
and the input fingerprint image, and the number of correspond-
ing minutiae pairings between the two images is used to recog-
nize a valid fingerprint image [1]. The feature-based matching
provides an effective way of identification for majority of peo-
ple.

However, it has been known that there are a number of peo-
ple whose fingerprints could not be identified by the feature-
based methods due to special skin conditions, where feature
points are hard to be extracted by image processing. The ratio
of people who have such difficult fingerprints varies depending
on race, sex, age, job groupings, etc., but it is said that one to
five percentage of total population may fall into this category.

Addressing this problem, this paper proposes an efficient
fingerprint recognition algorithm using phase-based image match-
ing — an image matching technique using the phase compo-
nents in 2D Discrete Fourier Transforms (DFTs) of given im-
ages. The technique has been successfully applied to high-
accuracy image registration tasks for computer vision appli-
cations [2]–[4], where estimation of sub-pixel image transla-
tion is a major concern. In this paper, we demonstrate that this
technique is highly effective also for fingerprint matching (see
[5] for earlier discussions on this idea). The use of Fourier
phase information of fingerprint images makes possible highly
reliable fingerprint matching for low-quality fingerprints whose
minutiae are difficult to be extracted.

II. PHASE-BASED IMAGE MATCHING

In this section, we introduce the principle of phase-based im-
age matching using the Phase-Only Correlation (POC) func-
tion (which is sometimes called the “phase-correlation func-
tion”) [2]–[4]. Consider two N1×N2 images, f(n1, n2) and
g(n1, n2), where we assume that the index ranges are n1 =
−M1 · · ·M1 (M1 > 0) and n2 = −M2 · · ·M2 (M2 > 0)
for mathematical simplicity, and hence N1 = 2M1 + 1 and
N2 = 2M2 + 1. Let F (k1, k2) and G(k1, k2) denote the 2D
DFTs of the two images. F (k1, k2) is given by

F (k1, k2) =
∑

n1,n2

f(n1, n2)W k1n1
N1

W k2n2
N2
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Fig. 1. Example of genuine matching using the original POC function and the BLPOC function: (a) registered fingerprint image
f(n1, n2), (b) input fingerprint image g(n1, n2), (c) original POC function rfg(n1, n2) and (d) BLPOC function rK1K2

fg (n1, n2)
with K1 = 34 and K2 = 63.

= AF (k1, k2)ejθF (k1,k2), (1)

where k1 = −M1 · · ·M1, k2 = −M2 · · ·M2, WN1 = e−j 2π
N1 ,

WN2 = e
−j 2π

N2 , and
∑

n1,n2
denotes

∑M1
n1=−M1

∑M2
n2=−M2

.
AF (k1, k2) is amplitude and θF (k1, k2) is phase. G(k1, k2) is
defined in the same way. The cross-phase spectrum RFG(k1, k2)
is given by

RFG(k1, k2) =
F (k1, k2)G(k1, k2)
|F (k1, k2)G(k1, k2)|

= ejθ(k1,k2), (2)

where G(k1, k2) is the complex conjugate of G(k1, k2) and
θ(k1, k2) denotes the phase difference θF (k1, k2)−θG(k1, k2).
The POC function rfg(n1, n2) is the 2D Inverse DFT (2D IDFT)
of RFG(k1, k2) and is given by

rfg(n1, n2) =
1

N1N2

∑

k1,k2

RFG(k1, k2)W−k1n1
N1

W−k2n2
N2

, (3)

where
∑

k1,k2
denotes

∑M1
k1=−M1

∑M2
k2=−M2

. When two im-
ages are similar, their POC function gives a distinct sharp peak.
When two images are not similar, the peak drops significantly.
The height of the peak gives a good similarity measure for im-
age matching, and the location of the peak shows the transla-
tional displacement between the images.

We modify the definition of POC function to have a BLPOC
(Band-Limited Phase-Only Correlation) function dedicated to
fingerprint matching tasks. The idea to improve the matching
performance is to eliminate meaningless high frequency com-
ponents in the calculation of cross-phase spectrum RFG(k1, k2)
depending on the inherent frequency components of fingerprint
images [5]. Assume that the ranges of the inherent frequency
band are given by k1 = −K1 · · ·K1 and k2 = −K2 · · ·K2,
where 0≤K1≤M1 and 0≤K2≤M2. Thus, the effective size
of frequency spectrum is given by L1 = 2K1 + 1 and L2 =

2K2 + 1. The BLPOC function is given by

rK1K2
fg (n1, n2) =

1
L1L2

∑

k1,k2

′
RFG(k1, k2)

×W−k1n1
L1

W−k2n2
L2

, (4)

where n1 = −K1 · · ·K1, n2 = −K2 · · ·K2, and
∑′

k1,k2
de-

notes
∑K1

k1=−K1

∑K2
k2=−K2

. Note that the maximum value of
the correlation peak of the BLPOC function is always normal-
ized to 1 and does not depend on L1 and L2.

Figure 1 shows an example of genuine matching using the
original POC function rfg and the BLPOC function rK1K2

fg .
The BLPOC function provides the higher correlation peak and
better discrimination capability than that of the original POC
function.

III. FINGERPRINT RECOGNITION ALGORITHM

In this section, we propose the fingerprint recognition algo-
rithm using the POC function. Figure 2 shows the flow dia-
gram of the proposed fingerprint recognition algorithm. The
proposed algorithm consists of the four steps: (i) core detec-
tion, (ii) rotation and displacement alignment, (iii) common re-
gion extraction and (iv) fingerprint matching.
(i) Core detection

This step is to detect the core of the registered fingerprint
image f(n1, n2) and the input fingerprint image g(n1, n2) in
order to align the displacement between the two images. The
core is defined as a singular point in a fingerprint image that
exhibits the maximum ridge line curvature. The Poincaré index
method [6] is used to detect the core in our system.
(ii) Displacement and rotation alignment

We need to normalize the displacement and the rotation be-
tween the registered fingerprint f(n1, n2) and the input finger-
print g(n1, n2) in order to perform the high-accuracy finger-
print matching.
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Fig. 2. Flow diagram of the proposed algorithm.

In the case when both fingerprint images have their cores,
we first align the translational displacement between finger-
print images using the position of the cores. Next, we normal-
ize the rotation by using a straightforward approach as follows.
We first generate a set of rotated images fθ(n1, n2) of the regis-
tered fingerprint f(n1, n2) over the angular range −40◦ ≤ θ ≤
40◦ with an angle spacing 1◦, where bi-cubic interpolation is
employed for image rotation. The rotation angle Θ of the in-
put image relative to the registered image can be determined
by evaluating the similarity between the rotated replicas of the
registered image fθ(n1, n2) (−40◦ ≤ θ ≤ 40◦) and the input
image g(n1, n2) using the BLPOC function.

When either f(n1, n2) or g(n1, n2) does not have its core,
we first normalize the rotation by the above straightforward ap-
proach. Next, we align the translational displacement between
the rotation-normalized image fΘ(n1, n2) and the input image
g(n1, n2). The displacement can be obtained as the peak loca-
tion of the POC function between fΘ(n1, n2) and g(n1, n2).

Thus, we have normalized versions of the registered im-
age and the input image, which are denoted by f ′(n1, n2) and
g′(n1, n2).
(iii) Common region extraction

Next step is to extract the overlapped region (intersection)
of the two images f ′(n1, n2) and g′(n1, n2). This process
improves the accuracy of fingerprint matching, since the non-
overlapped areas of the two images become the uncorrelated
noise components in the BLPOC function. In order to detect
the effective fingerprint areas in the registered image f ′(n1, n2)
and the input image g ′(n1, n2), we examine the n1-axis projec-
tion and the n2-axis projection of pixel values. Only the com-
mon effective image areas, f ′′(n1, n2) and g′′(n1, n2), with
the same size are extracted for the succeeding image matching
step.

(iv) Fingerprint matching

We calculate the BLPOC function rK1K2
f ′′g′′ (n1, n2) between

the two extracted images f ′′(n1, n2) and g′′(n1, n2), and eval-
uate the matching score. The BLPOC function may give mul-
tiple correlation peaks due to elastic fingerprint deformation.
Thus, we define the matching score between the two images
as the sum of the highest two peaks of the BLPOC function
rK1K2
f ′′g′′ (n1, n2).

IV. EXPERIMENTAL RESULTS

This section describes a set of experiments for evaluating fin-
gerprint matching performance of the proposed algorithm.

In our experiment, the database consists of impressions ob-
tained from 30 subjects using a pressure sensitive sensor (BLP-
100, BMF Corporation), which can capture fingerprint images
of 256 × 384 pixels. In the captured images, 20 of subjects
have good-quality fingerprints and the remaining 10 subjects
have low-quality fingerprints due to dry fingertips (6 subjects),
rough fingertips (2 subjects) and allergic-skin fingertips (2 sub-
jects). Figure 3 shows some examples of fingerprint images.
Thus, the test set considered here is specially designed to evalu-
ate the performance of fingerprint matching under difficult con-
dition. We capture 11 impressions of the right index finger for
every subject, each of which is taken at different timing. The
total number of fingerprint images used in this experiment is
330 (30 subjects × 11 images).

We compare three different matching algorithms: (A) a typ-
ical minutiae-based algorithm (which is commercially avail-
able), (B) a simple POC-based algorithm [5], and (C) the pro-
posed algorithm. The performance of the biometrics-based
identification system is evaluated by the Receiver Operating
Characteristic (ROC) curve, which illustrates the False Non-
Matching Rate (FNMR) against the False Matching Rate (FMR)
at different thresholds on the matching score. We first evaluate
the FNMR for all possible combinations of genuine attempts;
the number of attempts is 11C2 × 30 = 1650. Next, we eval-
uate the FMR for 30C2 = 435 impostor attempts, where we
select a single image (the first image) for each fingerprint and
make all the possible combinations of impostor attempts. Fig-
ure 4 shows the ROC curve for the three algorithms (A)–(C).
The proposed algorithm (C) exhibits significantly higher per-
formance, since its ROC curve is located at lower FMR/FNMR
region than those of the minutiae-based algorithm (A) and the
POC-based algorithm (B).

The Equal Error Rate (EER) and the ZeroFMR are used to
summarize the accuracy of a verification system. The EER is
defined as the error rate where the FNMR and the FMR are
equal. The ZeroFMR is defined as the lowest FNMR where
FMR=0%. Table I summarizes EER and ZeroFMR for match-
ing attempts using all the fingerprints and for attempts using
only low-quality fingerprints. In the case of using all the finger-
prints, the EER of the proposed algorithm (C) is 1.90%, while
the EER of the POC-based algorithm (B) is 3.03% and that of
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Fig. 3. Examples of fingerprint images in the database: (a)
good-quality fingerprint, (b) dry fingertip, (c) rough fingertip
and (d) allergic-skin fingertip.

the minutiae-based algorithm (A) is 4.81%. In the case of us-
ing only low-quality fingerprints, the EER of the proposed al-
gorithm (C) is 0.00%, while the EER of POC-based algorithm
(B) is 0.54% and that of the minutiae-based algorithm (A) is
10.31%. As is observed in the above experiments, the pro-
posed algorithm is particularly useful for verifying low-quality
fingerprints.

V. CONCLUSION

This paper proposed an efficient fingerprint recognition algo-
rithm using the phase-based image matching. The proposed
technique is particularly effective for verifying low-quality fin-
gerprint images that could not be identified correctly by con-
ventional techniques. We developed commercial fingerprint
verification units for access control applications [7]. We expect
that the proposed technique is implemented in existing finger-
print verification units in the near future.
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