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ABSTRACT
In this paper, we present a robust Phase-Only Correla-
tion (POC)-based motion estimation method for video
sequences. Robust motion estimation is indispensable
for many applications such as mesh-based video cod-
ing, stereo vision, and super-resolution imaging. In
our proposed method, the motion vector of a point
in a video frame is adaptively switched between mo-
tion vectors obtained by two motion estimation meth-
ods: (i) POC-based full search and (ii) POC-based
hierarchical search. This approach can reliably de-
tect both global and local motion in video sequences.
We evaluate the robustness of our proposed method in
mesh-based motion compensation. Experimental re-
sults show that our proposed method performs signif-
icantly better than conventional full search using Sum
of Absolute Differences (SAD).
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1 Introduction

Motion estimation is the process of determining the
movement of the objects of a video sequence. The
movement is usually expressed in terms of the motion
vectors of selected points within the current frame with
respect to another frame known as the reference frame.
A motion vector represents the displacement of a point
between the current frame and the reference frame.

Motion estimation is a fundamental task in nu-
merous fields, such as image processing, image analy-
sis, video coding, and computer vision. Robust high-
accuracy motion estimation is essential for applica-
tions such as mesh-based motion compensation for
video coding [1], stereo vision 3D measurement [2],
and super-resolution imaging [3] (the reconstruction of
a high-resolution image using multiple low-resolution
images). Here, robustness refers to consistent pixel-
level estimation of motion vectors with minimal false
detection.

Among the various motion estimation methods,
the block matching algorithm is most popular due to

its simplicity. In block matching algorithms, an im-
age block centered on a point in the current frame is
compared with candidate blocks in the reference frame
based on certain dissimilarity or similarity measures in
order to find the best matching block within a pre-
defined search area. An example of a dissimilarity
measure is Sum of Absolute Differences (SAD). The
motion vector of the point is given by the block dis-
placement. Strategies for finding the best matching
block are broadly classified into two types: full search
methods and hierarchical search methods. The former
is suitable for detecting local motion of individual ob-
jects, while the latter is suitable for detecting global
motion of the scene.

Recently, a high-accuracy image matching tech-
nique using a Phase-Only Correlation (POC) func-
tion [4]–[6] has been developed. Using the POC func-
tion, we can estimate the translational displacement
as well as the degree of similarity between two image
blocks from the location and height of the correlation
peak, respectively. It has been demonstrated that this
matching technique can estimate the displacement be-
tween two images with 1/100-pixel accuracy when the
image size is about 100×100 pixels [5].

This paper presents a robust POC-based mo-
tion estimation method for video sequences. Our pro-
posed method combines the advantages of hierarchi-
cal search with those of full search. The motion vec-
tor of a point is adaptively switched between motion
vectors obtained from POC-based hierarchical search
and POC-based full search, so as to detect both global
and local motion in video sequences. We evaluate the
robustness of our proposed method using mesh-based
motion compensation, where the quality of the mo-
tion compensated images is highly dependent on the
robustness of the motion estimation method.

2 Phase-Only Correlation

Consider two N1×N2 images, f(n1, n2) and g(n1, n2),
where we assume that the index ranges are n1 =
−M1, · · · , M1 and n2 = −M2, · · · , M2 for mathemat-
ical simplicity, and hence N1 = 2M1 + 1 and N2 =
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2M2 + 1. Let F (k1, k2) and G(k1, k2) denote the 2D
Discrete Fourier Transforms (2D DFTs) of the two im-
ages. F (k1, k2) and G(k1, k2) are given by

F (k1, k2) =
∑
n1n2

f(n1, n2)W k1n1
N1

W k2n2
N2

= AF (k1, k2)ejθF (k1,k2), (1)

G(k1, k2) =
∑
n1n2

g(n1, n2)W k1n1
N1

W k2n2
N2

= AG(k1, k2)ejθG(k1,k2), (2)

where k1 = −M1, · · · , M1, k2 = −M2, · · · , M2,
WN1 = e

−j 2π
N1 , WN2 = e

−j 2π
N2 , and the operator∑

n1n2
denotes

∑M1
n1=−M1

∑M2
n2=−M2

. AF (k1, k2) and
AG(k1, k2) are amplitude components, and ejθF (k1,k2)

and ejθG(k1,k2) are phase components.
The cross-phase spectrum (or normalized cross

spectrum) R̂(k1, k2) is defined as

R̂(k1, k2) =
F (k1, k2)G(k1, k2)
|F (k1, k2)G(k1, k2)|

= ejθ(k1,k2), (3)

where G(k1, k2) denotes the complex conjugate of
G(k1, k2) and θ(k1, k2) = θF (k1, k2) − θG(k1, k2). The
Phase-Only Correlation (POC) function r̂(n1, n2) is
the 2D Inverse Discrete Fourier Transform (2D IDFT)
of R̂(k1, k2) and is given by

r̂(n1, n2)

=
1

N1N2

∑
k1k2

R̂(k1, k2)W−k1n1
N1

W−k2n2
N2

, (4)

where
∑

k1k2
denotes

∑M1
k1=−M1

∑M2
k2=−M2

.
Now consider fc(x1, x2) as a 2D image defined

in continuous space with real-number indices x1 and
x2. Let δ1 and δ2 represent sub-pixel displacements of
fc(x1, x2) to x1 and x2 directions, respectively. So, the
displaced image can be represented as fc(x1 − δ1, x2 −
δ2). Assume that f(n1, n2) and g(n1, n2) are spatially
sampled images of fc(x1, x2) and fc(x1 − δ1, x2 − δ2),
and are defined as

f(n1, n2) = fc(x1, x2)|x1=n1T1,x2=n2T2
,

g(n1, n2) = fc(x1 − δ1, x2 − δ2)|x1=n1T1,x2=n2T2
,

where T1 and T2 are the spatial sampling intervals, and
index ranges are given by n1 = −M1, · · · , M1 and n2 =
−M2, · · · , M2. The POC function r̂(n1, n2) between
f(n1, n2) and g(n1, n2) will be given by

r̂(n1, n2)

� α

N1N2

sin{π(n1 + δ1)}
sin{ π

N1
(n1 + δ1)}

sin{π(n2 + δ2)}
sin{ π

N2
(n2 + δ2)} ,(5)

where α ≤ 1. The peak position of the POC function
corresponds to the displacement between the two im-
ages, and the peak value α corresponds to the degree
of correlation between the two images.
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Figure 1. Function fitting for estimating the peak po-
sition.

For high accuracy sub-pixel image matching, the
following techniques [5] are important: function fitting
using equation (5) for high-accuracy estimation of sub-
pixel displacement (δ1, δ2) and peak value α, applica-
tion of Hanning window to reduce image boundary ef-
fects and low-pass filtering to reduce aliasing and noise
effects. Figure 1 shows an example of function fitting
using equation (5) to estimate the true position and
height of the correlation peak.

In this paper, we use two versions of the POC
function for image matching. We use a simplified ver-
sion where only windowing technique and low-pass
filtering is employed for fast computation. The dis-
placement between two image blocks is estimated by
detecting the position of the maximum value of the
POC function r̂(n1, n2) in equation (4) with pixel ac-
curacy. We also employ a high-accuracy version that
uses function fitting, windowing and low-pass filtering
technique for high-accuracy estimation of correlation
peak α and sub-pixel displacement (δ1, δ2).

3 POC-Based Motion Estimation

In this section, our proposed POC-based motion esti-
mation method is described. We describe two differ-
ent search strategies for block matching: POC-based
full search and POC-based hierarchical search. We
also propose an adaptive search strategy that adap-
tively switches between the result of the above two
algorithms for more robust motion estimation.

3.1 Full Search Method

In this section, we describe a POC-based full search
motion estimation method (known thereafter as POC-
FS) that requires less calculation than conventional
full search while having almost no loss in optimality.
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We consider two image blocks of size W × W
with Hanning window function of the same size ap-
plied. Since the half-width of the Hanning window
function is W

2 , we may consider the maximum reliable
displacement estimate between the two image blocks
to be ±W

4 both horizontally and vertically. Hence,
instead of examining every candidate block, we only
need to examine candidate blocks at W

4 pixel intervals
in the search area.
Procedure for POC-FS
Input:

current image I(n1, n2),
reference image J(n1, n2),
point p in I(n1, n2)

Output:
corresponding point q of point p in J(n1, n2),
motion vector vFS

p of point p
Step 1: Extract an image block of size W × W cen-
tered on point p in the current frame I(n1, n2).
Step 2: Calculate POC function between the image
block in the current frame I(n1, n2) and candidate
blocks in the reference frame J(n1, n2) every W

4 pix-
els in the search area. We use the simplified version
of the POC function to obtain the rough correlation
peak (defined as the maximum value of the POC func-
tion r̂(n1, n2) in Equation (4)) and the peak position
which gives the displacement between the two blocks
with pixel accuracy.
Step 3: Identify the top 3 matching blocks in Step
2, and displace the blocks by their displacement esti-
mates. This brings the correlation peaks to the centers
of the blocks. Re-calculate the POC function for the 3
new candidate blocks. The best matching block is the
block with the highest correlation peak among the 3
blocks. Again, the simplified version of the POC func-
tion is used. The corresponding point q is centered on
the best matching block.
Step 4: Find the motion vector vFS

p = q − p.
In our experiments we set the window size as

32×32 and the search range as ±16 or ±32 both hor-
izontally and vertically, depending on the expected
range of motion.

3.2 Hierarchical Search Method

In the POC-based hierarchical search motion estima-
tion method (known thereafter as POC-HS), some
coarser versions of the original input images are cre-
ated. This method is also known as the coarse-to-fine
correspondence search technique [6]. The POC-based
block matching starts at the coarsest image layer and
the operation gradually moves to the finer layers. The
motion vector detected at each layer is propagated to
the next finer layer in order to guide the search at that
layer. An overview of the technique is shown in Figure
2. Let po be the given point in the current image, and
q0 be the corresponding point in the reference image,

and let pl and ql be the matching points at the l-th
layer. The aim of the correspondence search is to find
the corresponding point q0 of point p0 and in doing so,
we obtain the motion vector of p0 as q0 − p0.
Procedure for POC-HS
Input:

current image I0(n1, n2) (= I(n1, n2)),
reference image J0(n1, n2) (= J(n1, n2)),
point p0 (= p) in I0(n1, n2)

Output:
corresponding point q0 of point p0 in J0(n1, n2),
motion vector vHS

p0
of point p0

Step 1: For l = 1, 2, · · · , lmax, create the l-th layer
images Il(n1, n2) and Jl(n1, n2), i.e., coarser versions
of I0(n1, n2) and J0(n1, n2), recursively as follows:

Il(n1, n2) =
1
4

1∑
i1=0

1∑
i2=0

Il−1(2n1 + i1, 2n2 + i2),

Jl(n1, n2) =
1
4

1∑
i1=0

1∑
i2=0

Jl−1(2n1 + i1, 2n2 + i2).

In our experiments we set the value of lmax to 2 or 3
depending on the expected range of motion.
Step 2: For every layer l = 1, 2, · · · , lmax, calculate
the coordinate pl = (pl1, pl2) corresponding to the orig-
inal point p0 recursively as follows:

pl = � 1
2pl−1� = (� 1

2pl−1 1�, � 1
2pl−1 2�). (6)

Step 3: We assume that qlmax = plmax in the coarsest
layer. Let l = lmax − 1.
Step 4: From the l-th layer images Il(n1, n2) and
Jl(n1, n2), extract two image blocks (of size W × W )
fl(n1, n2) and gl(n1, n2) with their centers on pl and
2ql+1, respectively. For accurate matching, the size
of image blocks should be reasonably large. In our
experiments, we use 32×32 image blocks.
Step 5: Estimate the displacement between fl(n1, n2)
and gl(n1, n2) with pixel accuracy using the simplified
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Figure 2. Block matching using a hierarchical coarse-
to-fine approach.
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version of the POC function, in which the displace-
ment is determined to pixel-level accuracy. Let the
estimated displacement vector be δl. The l-th layer
correspondence ql is determined as follows:

ql = 2ql+1 + δl. (7)

Step 6: Decrement the counter by 1 as l = l − 1 and
repeat from Step 4 to Step 6 while l ≥ 0.

Step 7: Find the motion vector vHS
p0

= q0 − p0.

3.3 Adaptive Search Method

To adapt to both global and local motion in video
sequences, we propose a POC-based adaptive search
motion estimation method (known thereafter as POC-
HS/FS) that adaptively switches between POC-HS
and POC-FS to detect correct motion.

When switching between POC-HS and POC-FS,
two factors come into consideration. The first factor is
how well the image block matches with its best match-
ing block. This is given by the correlation peak α of
the POC function. The second factor is to what ex-
tent the motion vector at a point p correlates with
the motion vectors of the set of its surrounding points
Sp. We introduce a measure D, which represents how
much the motion vector vp differs from the motion vec-
tors of the points in Sp. Sp may not necessarily refer
to the adjacent pixels of p. We can freely define the
surrounding points to have some distance from p.

D(vp) =
∑
s∈Sp

|vp − vs|. (8)

POC-FS is effective for detecting local motions of
individual objects, but the possibility of mismatching
with a similar-looking block is high. On the other
hand, POC-HS uses a larger matching area to increase
the reliability, but may fail to detect the correct motion
when the block overlaps with two or more objects with
different motion. We use the following discriminant Z
for each point p to decide which result to use.

Z =
αFS

p

αHS
p

× D(vHS
p )

D(vFS
p )

. (9)

Here, αFS
p , αHS

p are the correlation peaks of the POC
function for the best matching block found using POC-
FS, POC-HS respectively. We use the function fitting
technique described in Section 2 for high-accuracy es-
timation of the peak values. If Z ≥ 1.0, then the vFS

p

is chosen, otherwise if Z < 1.0, then vHS
p is chosen.

Procedure for POC-HS/FS
Input:

current image I(n1, n2),

reference image J(n1, n2),
point p in I(n1, n2)

Output:
motion vector vp of point p

Step 1: Use POC-HS to find vHS
p and αHS

p .
Step 2: Use the following procedure to obtain vp.

If αHS
p > threshold value k then
vp = vHS

p

else
Use POC-FS to find vFS

p and αFS
p

Calculate discriminant Z
If Z ≥ 1.0 then

vp = vFS
p

else
vp = vHS

p

end
end

In our experiments we let k = 0.5.
An example of motion estimation using POC-FS,

POC-HS and POC-HS/FS is shown in Figure 3 for
the video sequence Flower Garden. POC-FS fails
to detect the correct motion for some points close to
the tree boundary because of occlusion. On the other
hand, due to different motion of the tree and the back-
ground, POC-HS fails to detect the correct motion for
some points within the tree. By adaptively switching
between POC-FS and POC-HS, a more satisfactory
result is obtained by POC-HS/FS.

4 Experiment and Evaluation

In our first experiment we investigate the robustness
of POC-HS/FS for mesh-based motion compensation
using a wide variety of MPEG-4 standard test video
sequences that have mostly global motion, local mo-
tion or a good mix of both. We create the motion
compensated image of the current frame and compare
it with the current frame to calculate PSNR.

The motion compensation procedure for the cur-
rent frame t is as follows. Nodes are positioned every
16 pixels to form a square mesh that partitions the
image into square blocks. To avoid boundary occlu-
sion effects, we exclude a frame boundary of 16 pixels

(a) (b) (c)

Figure 3. Motion estimation for Flower Garden using
(a) POC-FS, (b) POC-HS, and (c) POC-HS/FS.
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from the motion compensation process. Motion esti-
mation is done for every node in the current frame t
with respect to the reference frame t − 1. The projec-
tive transformation of a point (n1, n2) in frame t to
the point (n′

1, n
′
2) in frame t − 1 is defined as

⎛
⎝

n′
1

n′
2

1

⎞
⎠ =

⎛
⎝

h1 h2 h3

h4 h5 h6

h7 h8 1

⎞
⎠

⎛
⎝

n1

n2

1

⎞
⎠ , (10)

where h1 ∼ h8 are the projective parameters of the
projective transformation matrix H , shown in Figure
4. The coordinates of the four corner nodes of an im-
age block in frame t and the coordinates of their cor-
responding nodes in frame t − 1 are used to calculate
H . Next, the inverse matrix H ′ is used to create the
motion compensated image block of frame t, as shown
in Figure 4. This procedure is repeated for every block
to generate the motion compensated image of frame t.

To calculate H accurately, sub-pixel accuracy of
motion vectors is required. We use the high-accuracy
version of the POC function described in Section 2,
where function fitting is employed to calculate the sub-
pixel displacement after the motion vectors have been
estimated to pixel-level accuracy using POC-HS/FS.

In our experiment, we also compare our proposed
method with SAD-based full search motion estimation
method (known thereafter as SAD-FS). The block size
for SAD-FS is set at 16×16, corresponding to the half-
width of the 32×32 Hanning window used for POC-
based image matching. For sub-pixel estimation of
motion vector, we use bilinear interpolation to esti-
mate to 0.125-pixel accuracy.

Video sequences often contain uniform, texture-
less and featureless regions that cause mismatching.
An example of this is the sky in the video sequences
Shinjuku and Flower Garden. To prevent such mis-
matching, we identify nodes in areas that have low
standard deviation of luminance and set their motion
vectors to zero.

The average PSNR of the motion compensated
images is given in Table 1. We see that the average
PSNR is higher for POC-HS/FS than for SAD-FS. In
general, POC-HS/FS produced more robust estima-
tion of motion vectors than SAD-FS, hence resulting
in more accurate motion compensation. For video se-
quences that contained similar-looking textures such
as Shinjuku, Church and Mobile Calendar, POC-
HS/FS was significantly more robust, outperforming
SAD-FS by 2.5∼10 dB. Kiel Harbour, which contains
a gradual zoom-in, had only a slightly higher PSNR for
POC-HS/FS. In Table 1, we also observe that the av-
erage number of block matches for pixel-level matching
is significantly lower for POC-HS/FS.

Figures 5 and 6 plot the PSNR per frame for
Mobile Calendar and Shinjuku respectively. In both
cases the PSNR for POC-HS/FS is consistently higher
than for SAD-FS. Figures 7 and 8 give examples of mo-

Motion compensated
image of frame t

Reference frame t-1 Current frame t

(n1,n2)(n1’,n2’)

H’

H

Figure 4. Motion compensation procedure for a block.

tion compensated images. We observe that the motion
compensated images for POC-HS/FS are much closer
to the original images.

In our second experiment we investigate the effec-
tiveness of the adaptive switching mechanism of POC-
HS/FS. We employ 50 frames of the video sequence
Flower Garden, which contains fast horizontal camera
motion, along with an even faster-moving foreground
tree object (an example is shown in Section 3.3). We
call this sequence Flower Garden∗. We perform the
motion compensation procedure for each current frame
t with respect to reference frames t−b, where b = 1,2,3
and 4, to simulate various degrees of global and local
motion.

The average PSNR for POC-HS, POC-FS, and
POC-HS/FS, along with the percentage of vectors that
were adaptively switched from POC-HS to POC-FS
are shown in Table 2. We observe that the percentage
of switched vectors increases with larger apparent dis-
parity between the global motion of the background
and the local motion of the tree object. For each value
of b, the average PSNR for POC-HS/FS is highest,
thus demonstrating the effectiveness of the switching
mechanism.

5 Conclusion

This paper presents a robust POC-based motion esti-
mation method for video sequences. In the proposed
method, the motion vector is adaptively chosen from
the result of POC-based hierarchical search and POC-
based full search, so as to accommodate both global
and local motion. The proposed method is evaluated
using mesh-based motion compensation, where robust
motion estimation is essential. We have demonstrated
that the proposed method is generally more robust
than the conventional SAD-based full search method.

Further comparison of POC-based methods with
SAD-based methods, as well as the application of the
proposed method to stereo image matching, moving
object segmentation, etc. are left for future study.
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(a) (b) (c)
Figure 7. Motion compensation images for Mobile
Calendar: (a) Original image, (b) POC-HS/FS, and
(c) SAD-FS.

(a) (b) (c)
Figure 8. Motion compensation images for Shinjuku:
(a) Original image, (b) POC-HS/FS, and (c) SAD-FS.

Table 1. Average PSNR of motion compensated im-
ages for POC-HS/FS, SAD-FS (unit: dB). (The aver-
age number of block matches for pixel-level matching
is shown in parentheses.)

Sequence POC-HS/FS SAD-FS
Shinjuku 33.04 23.02

(1.2×103) (2.5×105)
Church 34.43 31.93

(8.2×102) (4.0×105)
Kiel Harbour 26.55 26.21

(1.4×103) (4.0×105)
Flower Garden 31.68 30.00

(7.8×102) (3.3×105)
Foreman 35.04 33.44

(1.5×103) (4.6×105)
Mobile Calendar 27.28 24.17

(1.0×103) (4.8×105)

Table 2. Average PSNR of motion compensated im-
ages for POC-HS, POC-FS, and POC-HS/FS (unit:
dB) for Flower Garden∗, and average percentage of
switched vectors.

b POC-HS POC-FS POC-HS/FS %
1 28.55 27.12 28.57 0.8
2 25.33 24.03 25.48 2.4
3 23.43 22.50 23.88 5.1
4 21.70 21.16 22.44 8.2
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