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SUMMARY This paper presents a high-accuracy image reg-
istration technique using a Phase-Only Correlation (POC) func-
tion. Conventional techniques of phase-based image registration
employ heuristic methods in estimating the location of the cor-
relation peak, which corresponds to image displacement. This
paper proposes a technique to improve registration performance
by fitting the closed-form analytical model of the correlation peak
to actual two-dimensional numerical data. This method can also
be extended to a spectrum weighting POC technique, where we
modify cross-phase spectrum with some weighting functions to
enhance registration accuracy. The proposed method makes pos-
sible to estimate image displacements with 1/100-pixel accuracy.
key words: image registration, subpixel registration, image
matching, phase-only correlation, phase correlation

1. Introduction

High-accuracy image registration is an important fun-
damental task in many fields, such as computer vision,
remote sensing, medical imaging, etc. Especially for
such applications as stereo-vision 3D measurement [1]
and super-resolution imaging (that reconstructs a high-
resolution image from multiple low-resolution images),
the estimation of image displacements with subpixel
accuracy is essential.

Over the years, various techniques for image regis-
tration have been developed. Typical examples include
methods using image correlation functions as well as
those using image features. Recently, a high-accuracy
image registration technique using a Phase-Only Cor-
relation (POC) function (or simply a “phase correlation
function”) has been developed [2]–[6]. The POC-based
image registration enables to estimate the displacement
between images with subpixel accuracy from the loca-
tion of the correlation peak.

The image matching using POC can be extended
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to the registration of translated, rotated and scaled
images [7]. In this registration technique, the angle
of image rotation and the scale factor of image re-
duction/magnification are detected by converting them
into image translation. Therefore, estimating transla-
tional displacements of images with high accuracy is
important. However, conventional techniques of phase-
based image registration employ ad hoc methods for
estimating the location of the correlation peak (usu-
ally using some interpolation techniques for the POC
function), which limits the accuracy of displacement es-
timation to 1/10-pixel level. Another problem is that
there have been no systematic reports on the experi-
mental evaluation of subpixel registration techniques.

In this paper, we propose a method to significantly
enhance the registration performance of the POC tech-
nique by fitting the analytical model of the correlation
peak to two-dimensional numerical data array. We also
extend this technique to a spectrum weighting POC
technique, where we modify cross-phase spectrum with
some weighting functions to reduce the effect of noise
and to control the shape of correlation peak for better
function fitting. Another original contribution of this
paper is that we give systematic experimental analysis
of the registration performance of the proposed tech-
nique by evaluating the errors in estimating the trans-
lational displacements (δ1, δ2), the rotation angle θ and
the scale factor λ. A set of experiments demonstrate
that the proposed technique can estimate image trans-
lation with 1/100-pixel accuracy, which leads to 1/40-
degree accuracy in rotation estimation and to 1/10000-
scale accuracy in scale factor estimation (when image
size is 251 × 251).

Original contribution of this paper are summa-
rized as follows: (i) derivation of a closed-form peak
model for the POC function in terms of Discrete Fourier
Transform (DFT), (ii) proposal of a high-accuracy im-
age registration technique based on the function fitting
using the derived peak model, (iii) proposal of a spec-
trum weighting technique that can control the shape of
peak models so as to improve registration accuracy, and
(iv) systematic experimental evaluation of registration
performance (∼ 1/100-pixel accuracy) using actual im-
ages captured by a commercial-off-the-shelf CCD cam-
era.
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2. Phase-Only Correlation Function

Consider two N1 ×N2 images, f(n1, n2) and g(n1, n2),
where we assume that the index ranges are n1 =
−M1, · · · ,M1 and n2 = −M2, · · · ,M2 for mathemat-
ical simplicity, and hence N1 = 2M1 + 1 and N2 =
2M2 + 1. Let F (k1, k2) and G(k1, k2) denote the 2D
Discrete Fourier Transforms (2D DFTs) of the two im-
ages. F (k1, k2) and G(k1, k2) are given by

F (k1, k2) =
∑
n1n2

f(n1, n2)W k1n1
N1

W k2n2
N2

= AF (k1, k2)ejθF (k1,k2), (1)

G(k1, k2) =
∑
n1n2

g(n1, n2)W k1n1
N1

W k2n2
N2

= AG(k1, k2)ejθG(k1,k2), (2)

where k1 = −M1, · · · ,M1，k2 = −M2, · · · ,M2, WN1 =
e−j 2π

N1，WN2 = e−j 2π
N2 , and the operator

∑
n1n2

denotes∑M1
n1=−M1

∑M2
n2=−M2

. AF (k1, k2) and AG(k1, k2) are
amplitude components, and ejθF (k1,k2) and ejθG(k1,k2)

are phase components.
The cross spectrum R(k1, k2) between F (k1, k2)

and G(k1, k2) is given by

R(k1, k2) = F (k1, k2)G(k1, k2)

= AF (k1, k2)AG(k1, k2)ejθ(k1,k2), (3)

where G(k1, k2) denotes the complex conjugate of
G(k1, k2) and θ(k1, k2) = θF (k1, k2) − θG(k1, k2). On
the other hand, the cross-phase spectrum (or normal-
ized cross spectrum) R̂(k1, k2) is defined as

R̂(k1, k2) =
F (k1, k2)G(k1, k2)
|F (k1, k2)G(k1, k2)|

= ejθ(k1,k2). (4)

The Phase-Only Correlation (POC) function r̂(n1, n2)
is the 2D Inverse Discrete Fourier Transform (2D
IDFT) of R̂(k1, k2) and is given by

r̂(n1, n2) =
1

N1N2

∑
k1k2

R̂(k1, k2)W−k1n1
N1

W−k2n2
N2

, (5)

where
∑

k1k2
denotes

∑M1
k1=−M1

∑M2
k2=−M2

.

3. Subpixel Image Registration

In this section, we propose high-accuracy displacement
estimation technique using the POC function. Consider
fc(x1, x2) as a 2D image defined in continuous space
with real-number indices x1 and x2. Let δ1 and δ2
represent subpixel displacements of fc(x1, x2) to x1 and
x2 directions, respectively. So, the displaced image can
be represented as fc(x1 − δ1, x2 − δ2). Assume that

f(n1, n2) and g(n1, n2) are spatially sampled images of
fc(x1, x2) and fc(x1 − δ1, x2 − δ2), defined as

f(n1, n2) = fc(x1, x2)|x1=n1T1,x2=n2T2
,

g(n1, n2) = fc(x1 − δ1, x2 − δ2)|x1=n1T1,x2=n2T2
,

where T1 and T2 are the spatial sampling intervals,
and index ranges are given by n1 = −M1, · · · ,M1 and
n2 = −M2, · · · ,M2. Let F (k1, k2) and G(k1, k2) be the
2D DFTs of f(n1, n2) and g(n1, n2), respectively. Con-
sidering the difference of properties between the Fourier
transform defined in continuous space and that defined
in discrete space carefully, we can now say that

G(k1, k2) ∼= F (k1, k2) · e−j 2π
N1

k1δ1e−j 2π
N2

k2δ2 .

Thus, R̂(k1, k2) is given by

R̂(k1, k2) ∼= ej 2π
N1

k1δ1ej 2π
N2

k2δ2 .

The POC function r̂(n1, n2) will be the 2D IDFT of
R̂(k1, k2), and is given by

r̂(n1, n2)

=
1

N1N2

∑
k1k2

R̂(k1, k2)W−k1n1
N1

W−k2n2
N2

∼=
α

N1N2

sin{π(n1 + δ1)}
sin{ π

N1
(n1 + δ1)}

sin{π(n2 + δ2)}
sin{ π

N2
(n2 + δ2)}

, (6)

where α = 1. The above equation represents the shape
of the peak for the POC function for common images
that are minutely displaced with each other. The peak
position of the POC function corresponds to the dis-
placement between the two images. We can prove that
the peak value α decreases (without changing the func-
tion shape itself), when small noise components are
added to the original images. Hence, we assume α � 1
in practice.

Figure 1 shows the POC function when (δ1, δ2) =
(0, 0) and (δ1, δ2) = (0.5, 0). Figures 1(a) and (c) show
the 3D plots of the POC function r̂(n1, n2), and (b) and
(d) show the enlarged 2D plots of the POC function
around the correlation peak. In Figs. 1(b) and (d), the
black dots indicate the discrete data points of r̂(n1, n2)
calculated by 2D DFT/IDFT, and the solid lines rep-
resent the estimated shape of the POC function given
by (6). As shown in Figs. 1(c) and (d), the maximum
value in the discrete 2D data array of the POC function
r̂(n1, n2) could be less than 1, even if the two images
f(n1, n2) and g(n1, n2) are captured from an identical
real-world image fc(x1, x2).

Our approach is to use Eq. (6)—the closed-form
peak model of POC function for images with minutely
displaced with each other—directly for estimating the
peak position by function fitting. This is possible only
when the displacement (δ1, δ2) is small enough in com-
parison with the total image size (N1, N2). When the
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Fig. 1 3D and 2D plots of the POC function r̂(n1, n2): (a) for the case (δ1, δ2) = (0, 0)
and (b) its enlarged view (n2 = 0); and (c) for the case (δ1, δ2) = (0.5, 0) and (d) its
enlarged view (n2 = 0).

displacement is relatively large, we must employ coarse-
to-fine search technique, where pixel-level image shift
is detected first and then subpixel displacement is esti-
mated by extracting sub-images from the original im-
ages so that the mutual translation of the two sub-
images is small enough to assume the peak model (6) to
be valid. For example, in stereo vision, we use multi-
resolution images to estimate the disparities between
stereo images, because we need to estimate relatively
large displacements using small block images [1]. The
coarse-to-fine search technique is to begin with images
of the lowest resolution to determine coarse displace-
ments, which gives an approximate solution for finer
displacement estimation in the next higher resolution
layer. This process is repeated to achieve subpixel reg-
istration accuracy. In this paper, we focus on the case
where displacements between images are very small, so
the coarse-to-fine search technique is not employed.

By calculating the POC function for two images
f(n1, n2) and g(n1, n2), we can obtain a data array of
r̂(n1, n2) for each discrete index (n1, n2), where n1 =
−M1, · · · ,M1 and n2 = −M2, · · · ,M2. It is possible
to find the location of the peak that may exist between
image pixels by fitting the function (6) to the calculated
data array around the correlation peak, where α, δ1 and
δ2 are fitting parameters. Figure 2(b) shows an example
where Eq. (6) is fitted to the data array of r̂(n1, n2).

Listed below are important considerations for
achieving high accuracy.

(i) Optimizing the number of points used in
function fitting
We employ a least-square fitting technique for estimat-
ing image displacements (δ1, δ2) and correlation peak
value α. Careful optimization of the number of fitting
data points (around the maximum peak) is important
in order to improve registration accuracy. Since the
POC function (6) has a very sharp peak, limited num-
ber of data points (3×3 ∼ 9×9) are enough to achieve
high-accuracy function fitting.
(ii) Windowing to eliminate the effect of peri-
odicity in DFT
Due to the DFT periodicity, an image can be considered
to “wrap around” at an edge, and therefore discontinu-
ities, which are not supposed to exist in real world, oc-
cur at every edge in 2D DFT computation. We reduce
the effect of discontinuity at image border by applying
2D window function to the input images f(n1, n2) and
g(n1, n2). For this purpose, we use 2D Hanning window
defined by

w(n1, n2) =
1 + cos(πn1

M1
)

2
1 + cos(πn2

M2
)

2
. (7)
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Fig. 2 Spectrum weighting functions and corresponding corre-
lation peak models: (a) H0(k1, k2), (b) r̂0(n1, n2), (c) H1(k1, k2),
(d) r̂1(n1, n2), (e) H2(k1, k2), (f) r̂2(n1, n2), (g) H3(k1, k2), (h)
r̂3(n1, n2), (i) H4(k1, k2), and (j) r̂4(n1, n2).

(iii) Modifying cross-phase spectrum by weight-
ing functions
For natural images, typically most of the energy is
concentrated in the low spatial frequency components.
Equation (4) of cross-phase spectrum R̂(k1, k2) im-
plies that the calculation of POC emphasizes the high
frequency components, which may have less reliabil-
ity (low S/N ratio) compared with the low frequency
components. We could improve the estimation accu-
racy by applying a low-pass-type weighting function to
R̂(k1, k2) in frequency domain and eliminating the high
frequency components having low reliability. A typical
example of the weighting function is a rectangular low-
pass function H1(k1, k2) defined as

H1(k1, k2) =
{

1 |k1| � U1, |k2| � U2

0 otherwise , (8)

where U1 and U2 are integers satisfying 0 � U1 � M1

and 0 � U2 � M2. The cross-phase spectrum R̂(k1, k2)
is multiplied by the weighting function H1(n1, n2) when
calculating the 2D IDFT. Let r̂1(n1, n2) be the POC
function when using the weighting function H1(k1, k2).
Then r̂1(n1, n2) will be given by

r̂1(n1, n2)

=
1

N1N2

∑
k1k2

R̂(k1, k2)H1(k1, k2)W−k1n1
N1

W−k2n2
N2

∼=
α

N1N2

sin{ V1
N1

π(n1 + δ1)}
sin{ π

N1
(n1 + δ1)}

sin{ V2
N2

π(n2 + δ2)}
sin{ π

N2
(n2 + δ2)}

,

(9)

where V1 = 2U1 + 1 and V2 = 2U2 + 1. Figure 2(d)
shows the situation when (9) is used in function fitting.
Note that the main lobe of the POC function extends
more than the case of no filtering (shown in Fig. 2(b)).

In general, if we use a weighting function, we need
to change the peak model for function fitting corre-
spondingly. In other words, we can change the peak
model for function fitting by changing the weighting
function to be multiplied with cross-phase spectrum.
Assume that we are to use the following peak model
for function fitting:

r̂(n1, n2) = h(n1 + δ1, n2 + δ2), (10)

where h(x1, x2) denotes an arbitrary closed-form func-
tion defined on real variables x1 and x2, and δ1 and δ2
are minute image displacements. Note that we need to
select the function model h(x1, x2) so that it can be re-
constructed completely using N1×N2 discrete sampling
points based on sampling theorem. For example, the
peak model (9) is a typical example of such functions.
Then, the corresponding weighting function H(k1, k2)
is obtained by computing the 2D DFT of h(n1, n2) nu-
merically. As a result, we have the following relation-
ship:
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r̂(n1, n2)

=
1

N1N2

∑
k1k2

R̂(k1, k2)H(k1, k2)W−k1n1
N1

W−k2n2
N2

∼=
1

N1N2

∑
k1k2

ej 2π
N1

k1δ1ej 2π
N2

k2δ2H(k1, k2)

· W−k1n1
N1

W−k2n2
N2

= h(n1 + δ1, n2 + δ2). (11)

For selecting h(n1, n2) and H(k1, k2), we must
carefully consider the following: (i) we had better
use the function h(n1, n2) that makes possible high-
accuracy function fitting, and (ii) we must select
H(k1, k2) for realizing adequate weighting of cross-
phase spectrum according to the reliability of frequency
components. Also, we need to optimize both the num-
ber of data points used for function fitting and pass-
band width of weighting function H(k1, k2).

In addition to the above mentioned H1(k1, k2),
we consider the weighting functions H2(k1, k2) and
H3(k1, k2), which are derived from H1(k1, k2) as:

H2(k1, k2) =
1

N1N2
H1(k1, k2)⊗ H1(k1, k2), (12)

H3(k1, k2) =
1

N2
1N2

2

H2(k1, k2)⊗ H1(k1, k2), (13)

where ⊗ denotes the convolution operator. The corre-
sponding closed-form peak models are given below

r̂2(n1, n2)

=
1

N1N2

∑
k1k2

R̂(k1, k2)H2(k1, k2)W−k1n1
N1

W−k2n2
N2

∼=
{

α

N1N2

sin{ V1
N1

π(n1 + δ1)}
sin{ π

N1
(n1 + δ1)}

sin{ V2
N2

π(n2 + δ2)}
sin{ π

N2
(n2 + δ2)}

}2

,

(14)
r̂3(n1, n2)

=
1

N1N2

∑
k1k2

R̂(k1, k2)H3(k1, k2)W−k1n1
N1

W−k2n2
N2

∼=
{

α

N1N2

sin{ V1
N1

π(n1 + δ1)}
sin{ π

N1
(n1 + δ1)}

sin{ V2
N2

π(n2 + δ2)}
sin{ π

N2
(n2 + δ2)}

}3

.

(15)

Another useful example of weighting function is Gaus-
sian function H4(k1, k2) defined as

H4(k1, k2) ∼= e−2π2σ2(k2
1+k2

2), (16)

where σ is a parameter that controls the function width.
In this case, we need to use the following peak model:

r̂4(n1, n2) ∼=
1

2πσ2
e−(n2

1+n2
2)/2σ2

. (17)

Figures 2(a), (c), (e), (g) and (i) show the weighting

functions H0(k1, k2), H1(k1, k2), H2(k1, k2), H3(k1, k2)
and H4(k1, k2), respectively, where H0(k1, k2) is the
case of no filtering. The corresponding peak mod-
els r̂0(n1, n2), r̂1(n1, n2), r̂2(n1, n2), r̂3(n1, n2) and
r̂4(n1, n2) are shown in Figs. 2(b), (d), (f), (h) and (j),
respectively.

4. Experiments of Image Displacement Esti-
mation

This section describes a set of experiments for es-
timating translational image displacements using the
proposed technique. We have estimated the dis-
placements between two images taken by a CCD
camera (JAI CVM10 with Sony VCL–16WM lens).
The target object is a wood cube with the size of
10 cm× 10 cm× 10 cm, which is mounted on a micro
stage that allows precise alignment of the cube position
(Fig. 3). The cube is placed so that one side of the cube
is parallel with the focal plane of CCD. The distance
between the camera and the cube is 70 cm, and the size
of the cube in the captured images is about 200× 200.
We have moved the micro stage 53 times horizontally
with each step of 0.05mm displacement and took 30
sequential images (1 second) at each position. These
30 static frames are averaged to improve image quality.

From the captured images we have extracted 101×
101 sub-images having a wooden texture, which are
used for registration experiments (i.e., N1 = N2 = 101
and M1 = M2 = 50). These sub-images contain only
the texture of the wood cube and do not contain back-
ground textures. We have calculated the POC function
between a reference image before moving the cube and
each image after moving it. We have estimated the hor-
izontal displacement δ1 [pixel] by fitting Eqs. (6), (9),
(14), (15), or (17) depending on the weighting func-
tion used in each experimental trial. The p × p data
points around the maximum peak of a correlation ar-
ray are used in function fitting with the least-square
method, where p is optimized in every experiment. The
parameters: V1 and V2 (i.e., U1 and U2) for H1(k1, k2)–
H3(k1, k2) and σ for H4(k1, k2) control the pass-band

Fig. 3 Experimental system.
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Table 1 Error [pixel] in displacement estimation.

Maximum RMS
Error Error

“Original” 0.5045 0.2837
“Fitting” 0.1232 0.0421
# of fitting points: 3× 3
Fitting function: r̂0(n1, n2)

“Fitting+Window” 0.0227 0.0101
# of fitting points: 3× 3
Fitting function: r̂0(n1, n2)

“Fitting+Window+H1(k1, k2)” 0.0165 0.0059
# of fitting points: 7× 7
Fitting function: r̂1(n1, n2)
U1/M1 = U2/M2 = 0.5

“Fitting+Window+H2(k1, k2)” 0.0138 0.0055
# of fitting points: 7× 7
Fitting function: r̂2(n1, n2)
U1/M1 = U2/M2 = 0.34

“Fitting+Window+H3(k1, k2)” 0.0083 0.0038
# of fitting points: 7× 7
Fitting function: r̂3(n1, n2)
U1/M1 = U2/M2 = 0.48

“Fitting+Window+H4(k1, k2)” 0.0080 0.0037
# of fitting points: 7× 7
Fitting function: r̂4(n1, n2)
σ = 0.71

width of weighting functions. These parameters are
also optimized in every experiment.

We evaluate the measurement errors in the follow-
ing manner. We have 53 sets of data of the actual
displacements δ1 [pixel] estimated from images and the
displacements ∆ [mm] of the micro stage. Using these
data, we calculate an approximate line δ1 = a × ∆
in a least-square sense, where a [pixel/mm] is a con-
stant. In this experiment, the parameter a is evaluated
as a ∼= 2.04 [pixel/mm] by least-squares fitting. This
means that 1mm displacement of the micro stage cor-
responds to the displacement of about 2.04 pixels in
the captured images. Now, let ∆i [mm]† be the actual
displacement of the micro stage after the i-th minute
movement, and let δ1i [pixel] be the displacement es-
timated from images taken at the corresponding i-th
position. We evaluate the estimation error εTi [pixel]
by the following equation:

εTi = δ1i − a ×∆i. (18)

Table 1 summarizes the error [pixel] in displace-
ment estimation, where RMS error represents Root
Mean Square error. The “Original” corresponds to
pixel-level displacement estimation, “Fitting” corre-
sponds to displacement estimation by function fitting
using (6), “Fitting+Window” means combination of
the function fitting technique and the windowing tech-
nique using (7), and “Fitting+Window+Hj(k1, k2)”
means combination of the function fitting technique,
the windowing technique and the spectrum weighting
technique using the weighting function Hj(k1, k2) (j =
1, 2, 3, 4).

The parameters shown in Table 1 are selected by

Table 2 RMS error [pixel] when changing the cutoff frequen-
cies and the number of fitting points (for the case of H1(k1, k2)).

U1
M1

= U2
M2

Number of Fitting Points
3×3 5×5 7×7 9×9

0.1 0.0303 0.0321 0.0313 0.0289
0.2 0.0118 0.0112 0.0103 0.0099

0.3 0.0075 0.0071 0.0070 0.0070
0.4 0.0072 0.0067 0.0063 0.0065
0.5 0.0077 0.0062 0.0059 0.0065
0.6 0.0119 0.0072 0.0090 0.0082
0.7 0.0157 0.0103 0.0106 0.0114
0.8 0.0200 0.0200 0.0166 0.0169
0.9 0.0178 0.0279 0.0300 0.0298
1.0 0.0105 0.0210 0.0282 0.0327

experimental optimization. For example, Table 2 shows
parameter optimization when using spectrum weighting
function H1(k1, k2). By changing the parameters of the
weighting function and the number of fitting points,
we can reduce the estimation error. From this table,
the best result is obtained when U1/M1 = U2/M2 =
0.5 and the number of fitting points is 7 × 7. This
result shows that eliminating unreliable high frequency
components is effective to achieve higher accuracy.

Figure 4 shows the registration error εTi [pixel]
(in each estimated δ1) versus a actual displacement
∆i [mm] of the cube. As for the spectrum weighting
function, only the case of H4(k1, k2) is shown. Our
initial observation shows that the estimation accuracy
could not be improved when using only weighting func-
tions. However, combination of windowing and spec-
trum weighting has a significant impact on registration
error reduction; RMS error decreases below 1/100-pixel
level.

Figure 5 shows the registration error when chang-
ing image size, where we employ the combination:
“Fitting+Window+H4(k1, k2).” As shown in this plot,
the estimation accuracy significantly depends on the
image size. However, the estimation error is still 1/100-
pixel level even if the image size is 41× 41.

5. Registration of Translated, Rotated and
Scaled Images

The proposed high-accuracy image registration tech-
nique can be extended to the registration for images
including translation, rotation and scaling simultane-
ously. This section is to evaluate the accuracy of rota-
tion angle estimation and scale factor estimation using
the proposed technique. In this experiment, we em-
ploy the algorithm described in [7] to transform the
image rotation and scaling into image translation. The
rotation angle and the scale factor are estimated by de-
tecting the corresponding translational displacements
by the proposed technique.

†∆i = 0.05×i [mm], since the cube is moved by 0.05mm
at every minute movement.
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Fig. 4 Error in displacement estimation for the case: (a)
“Original” (b) “Fitting,” (c) “Fitting+Window,” and (d)
“Fitting+Window+H4(k1, k2).”

Fig. 5 RMS error when changing the image size.

Consider fc(x1, x2) as a 2D image defined in con-
tinuous space with real-number indices x1 and x2. Let
gc(x1, x2) be the image obtained by translating, rotat-
ing and scaling the image fc(x1, x2) by the displace-
ments (δ1, δ2), the angle θ and the scale factor λ, re-
spectively. Assume that f(n1, n2) and g(n1, n2) are
spatially sampled images of fc(x1, x2) and gc(x1, x2)
as

f(n1, n2) = fc(x1, x2),
g(n1, n2) = gc(x1, x2)

= fc( λ(x1 − δ1) cos θ − λ(x2 − δ2) sin θ,

λ(x1 − δ1) sin θ + λ(x2 − δ2) cos θ ),

where n1 = −M1, · · · ,M1, n2 = −M2, · · · ,M2, x1 =
n1T1 and x2 = n2T2. For simplicity, we assume that
M1 = M2 = M , N1 = N2 = N and T1 = T2 = 1 in the
following discussion．Let Fc(Ω1,Ω2) be the 2D Fourier
Transform (2D FT) of fc(x1, x2), and F (k1, k2) and
G(k1, k2) be the 2D DFTs of f(n1, n2) and g(n1, n2),
respectively. Then, we have the approximation:

|F (k1, k2)| ∼= |Fc(Ω1,Ω2)|, (19)

|G(k1, k2)| ∼=
1
λ2

∣∣∣∣Fc

(
1
λ
(Ω1 cos θ − Ω2 sin θ),

1
λ
(Ω1 sin θ + Ω2 cos θ)

)∣∣∣∣ , (20)

where k1 = −M, · · · ,M，k2 = −M, · · · ,M , Ω1 =
2πk1/N and Ω2 = 2πk2/N . Thus, we could omit the
translational displacements (δ1, δ2) by considering only
amplitude spectra |F (k1, k2)| and |G(k1, k2)|. These
amplitude spectra are treated as real-valued images.

We estimate (δ1, δ2), θ and λ as follows: (i) esti-
mate the rotation angle θ and the scale factor λ using
the amplitude spectra |F (k1, k2)| and |G(k1, k2)|, (ii)
normalize the second image g(n1, n2) with the scale fac-
tor 1/λ and the rotation angle −θ to obtain a new im-
age g′(n1, n2), and (iii) estimate the translation (δ1, δ2)
between f(n1, n2) and g′(n1, n2).

The main problem here is the step (i) of the above
procedure. Let FLP (l1, l2) and GLP (l1, l2) be the log-
polar mapping of F (k1, k2) and G(k1, k2), respectively,
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where l1 = −M · · ·M and l2 = −M · · ·M . We can
write |FLP (l1, l2)| and |GLP (l1, l2)| as
|FLP (l1, l2)| ∼= |Fc( (π logN r) cosφ, (π logN r) sinφ )|,

(21)

|GLP (l1, l2)| ∼=
1
λ2

∣∣∣Fc

((
π logN

r

λ

)
cos(φ + θ),(

π logN

r

λ

)
sin(φ + θ))

∣∣∣ , (22)

where φ = l1π/N and r = N (2l2+2M+1)/2N . From the
above equations, we can now say that

|GLP (l1, l2)| ∼=
1
λ2

∣∣∣∣FLP

(
l1 +

N

π
θ, l2 − N logN λ

)∣∣∣∣ .
(23)

From the above equation, we can see that the ro-
tation angle θ and the scale factor λ is transformed to
the translational displacements (Nθ/π,−N logN λ) be-
tween two images FLP (l1, l2) and GLP (l1, l2). Hence,
we can estimate θ and λ using the proposed image reg-
istration technique described in the last section.

We can summarize the procedure of translation
(δ1, δ2), rotation θ and scaling λ estimation as follows:
[Step 1] Calculate 2D DFTs of the discrete im-
ages f(n1, n2) and g(n1, n2) to obtain F (k1, k2) and
G(k1, k2).

[Step 2] Calculate the amplitude spectra |F (k1, k2)|
and |G(k1, k2)|. For natural images, most energy is
concentrated in low-frequency domain. Hence, we had
better use log|F (k1, k2)| and log|G(k1, k2)| in stead of
|F (k1, k2)| and |G(k1, k2)|.

[Step 3] Calculate the log-polar mapping |FLP (l1, l2)|
and |GLP (l1, l2)|.

[Step 4] Estimate the image displacement between
|FLP (l1, l2)| and |GLP (l1, l2)| using the POC technique
to obtain θ and λ.

[Step 5] Normalize the second image g(n1, n2) with the
scale factor 1/λ and the rotation angle −θ to obtain
a new image g′(n1, n2), and estimate the translation
(δ1, δ2) between f(n1, n2) and g′(n1, n2). ✷

Our careful experimental observation shows that
the accuracy of log-polar mapping in the above pro-
cedure (Step 3) is particularly important. In log-polar
mapping, we need to interpolate pixel intensity between
discrete sampling points. The accuracy of this interpo-
lation has a significant impact on the total accuracy of
image registration. We employ a high-accuracy inter-
polation technique that combines zero-padding image
extension and bilinear image interpolation. (We must
omit the detailed discussion on this interpolation issue
due to limited space in this paper.)

We have carried out a set of experiments for eval-
uating the accuracy of rotation angle θ and scale factor

(a) (b)

Fig. 6 Experimental system setup: (a) rotation estimation and
(b) scale estimation.

λ estimated by using the proposed method. The target
object used in the following experiments is the same
wood cube shown in Fig. 3. We have mounted the cube
on a micro stage that allows precise rotation and z-axis
alignment as shown in Fig. 6. For rotation estimation
(Fig. 6(a)), the distance from the camera to the cube is
70 cm, and the size of the cube in the captured images
is about 350× 350. We use 251× 251 sub-images with
a wooden texture extracted from the camera images.
These sub-images contain only the texture of the wood
cube and do not contain background textures. We have
rotated the micro stage from 0 to 90 degrees with each
step of 1 degree, and took time-averaged images (30
frames at each position). For scale factor estimation
(Fig. 6(b)), the initial distance from the camera to the
cube is about 50 cm. We have moved the z-stage 12
times with each micro step of 5mm.

The measurement error for angle estimation is
evaluated by

εRi = θi −Θi,

where θi [degree] and Θi [degree] are the estimated an-
gle and the actual angle of the rotation stage for the
i-th micro step. Figure 7 shows the error in rotation
estimation, where “Original” corresponds to pixel-level
angle estimation, “Fitting” corresponds to rotation es-
timation by function fitting, and “Optimized” means
the combination of the function fitting technique, the
windowing technique and the spectrum weighting tech-
nique using the weighting function H4(k1, k2) (with
σ = 0.74). The number of fitting points used for
function fitting is 9 × 9. The RMS errors for “Orig-
inal,” “Fitting” and “Optimized” are 0.209 [degree],
0.0473 [degree] and 0.0277 [degree], respectively.

On the other hand, the measurement error for scale
estimation is evaluated by

εSi = λi −
b

b + Γi

where λi and Γi are the estimated scale factor and the
z-axis shift [mm] of a micro stage for the i-th micro
movement. The parameter b, the initial distance from
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Fig. 7 Error in rotation estimation.

Fig. 8 Error in scale estimation.

the camera to the object, is optimized by the least-
square method. Figure 8 shows the error in scale es-
timation, where “Original” corresponds to pixel-level
angle estimation, “Fitting” corresponds to rotation es-
timation by function fitting, and “Optimized” means
the combination of the function fitting technique, the
windowing technique and the spectrum weighting tech-
nique using the weighting function H4(k1, k2) (with
σ = 0.56). The number of fitting points used for func-
tion fitting is 9 × 9. The RMS errors for “Original,”
“Fitting” and “Optimized” are 5.00×10−3, 1.08×10−3

and 1.29 × 10−4, respectively.
As is observed in the above experiments, the pro-

posed technique for high-accuracy translation estima-
tion is effective also for rotation and scale estimation;
the proposed method achieves 1/40-degree accuracy in
rotation estimation and 1/10000-scale accuracy in scale
estimation when the image size is 251× 251.

6. Conclusion

Original contribution of this paper are summarized as
follows: (i) derivation of closed-form model for the

POC function in terms of Discrete Fourier Transform
(DFT), (ii) proposal of a high-accuracy image regis-
tration technique based on the function fitting using
the derived peak model, (iii) proposal of a spectrum
weighting technique that can control the shape of peak
models so as to improve registration accuracy, and (iv)
systematic experimental evaluation of registration per-
formance (∼ 1/100-pixel accuracy) using actual im-
ages captured by a commercial-off-the-shelf CCD cam-
era. We are planning to apply the proposed technique
to POC-based commercial products developed by our
group (see [8] for example). Also, a part of the methods
described in this paper has been successfully applied
to the implementation of a high-accuracy passive 3D
measurement system based on stereo image matching
[1]. Another interesting application is super-resolution
imaging, which reconstructs a high-resolution image us-
ing multiple low-resolution images.
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