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ABSTRACT

In ophthalmic diagnosis, it is crucial to observe the structure
of the retinal layers, and the use of Optical Coherence Tomog-
raphy (OCT) is growing for this purpose. Segmentation meth-
ods for OCT images have been proposed to measure the thick-
ness of each retinal layer. Methods for detecting the bound-
aries between retinal layers using U-Net, which consists of
2D CNN, 3D CNN, or a combination of both, have exhib-
ited high segmentation accuracy. On the other hand, these
methods assume that the retinal shape of the OCT image is
flattened to normalize the changes in the retinal shape due to
individuality and diseases. Retinal diseases and poor-quality
OCT images may prevent flattening, and therefore, methods
without flattening are required. To address this problem, we
propose a method for detecting the boundaries between reti-
nal layers using 1D CNN, utilizing the fact that the pixels of
each retinal layer exist in the vertical direction. The proposed
method employs two U-Nets consisting of 1D CNN that de-
tects boundaries pixel by pixel and 2D CNN that considers
the horizontal continuity of the boundaries. Through experi-
ments using public datasets, we demonstrate that the proposed
method can segment retinal layers more accurately than con-
ventional methods.

Index Terms— OCT, segmentation, retinal layer, retina,
U-Net

1. INTRODUCTION

Optical Coherence Tomography (OCT) is widely used in oph-
thalmology since it can noninvasively observe the retina in
three dimensions. The thickness of retinal layers needs to be
measured from OCT images for the diagnosis of diseases that
affect the thickness of retinal layers, such as Multiple Scle-
rosis (MS), Age-related Macular Degeneration (AMD), glau-
coma, etc. With the rapid development of deep learning tech-
niques [1], segmentation methods of OCT images using deep
learning [2] have achieved higher accuracy than conventional
graph-based methods [3, 4, 5, 6].

The pioneering method using Convolutional Neural Net-
works (CNNs) for retinal layer segmentation is ReLayNet [7].
ReLayNet assigns retinal and other labels to each pixel using

U-Net [8]. This method has a problem that the anatomical or-
der of the retinal layers cannot be taken into account because
of pixel-wise labeling. On the other hand, there are methods
that detect the boundaries between retinal layers instead of
segmenting the retinal layers. FCBR [9] detects the bound-
aries according to the anatomical order of the retinal layers.
Advanced methods of FCBR have been proposed, such as
SASR [10]. SASR [10] employs a 2D-3D hybrid network
to take into account the displacement between OCT images.
The above boundary detection methods apply flattening to the
OCT image as preprocessing to approximate the boundaries
as straight lines. Since the shape of the retinal layers varies
depending on individuality, aging, and disease, a wide variety
of shapes have to be taken into account for detection. There-
fore, the above methods simplify the problem by normaliz-
ing the OCT image so that the Bruch’s membrane (BM) of
the retina is flat, approximating the boundary detection as a
straight line detection [11]. If the quality of the OCT image
is low or the shape of the retinal layers changes significantly
due to disease, flattening may fail. Even if flattening can be
applied to OCT images, it is not always possible to convert
the boundaries of retinal layers into straight lines, depending
on the shape of the retina. For stable OCT image segmenta-
tion, it is necessary to develop a boundary detection method
independent of retinal shapes.

In this paper, we propose a boundary detection method
for retinal layers utilizing the fact that each boundary between
the retinal layers is represented by only one pixel in each lon-
gitudinal direction in B-scan images of OCT. The proposed
method employs the combination of longitudinal 1D U-Net
and 2D U-Net. Focusing on only one column in the longi-
tudinal direction of OCT images, there are pixels that indi-
cate the boundaries of all retinal layers, even if the retinal
shapes are different. We consider detecting the retinal layer
boundaries by extracting features from only the longitudinal
direction of the OCT image using 1D CNN. Fig. 1 shows
the application area of 2D and 1D convolution for flat shape
and diagonal shape of the retinal layers. In 2D convolution,
different features are extracted from flat and diagonal retinal
layers since the application areas are different for each layer.
In 1D convolution, the same features are extracted indepen-
dent of the shape of the retinal layers since the application
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Fig. 1. Application area of 2D and 1D convolution for flat
shape and diagonal shape of the retinal layers.

area is the same for the flat and diagonal retinal layers. We
combine feature extraction by 2D CNN in addition to feature
extraction by 1D CNN to achieve stable boundary detection
since 1D CNN cannot consider the connections in the lateral
direction. The proposed method does not require flattening
of the OCT image and does not depend on the shape of the
retinal layers unlike conventional boundary detection meth-
ods. This paper also proposes a new loss function to detect
the boundaries smoothly. Through a set of experiments using
three public datasets, we demonstrate the effectiveness of the
proposed method compared to conventional methods.

2. METHOD

We describe the retinal layer segmentation method using lon-
gitudinal 1D U-Net and 2D U-Net proposed in this paper. Fig.
2 shows an overview of the proposed method. An input im-
age for the proposed method is an OCT image acquired by
B-Scan. First, an OCT image is input to the longitudinal 1D
U-Net and 2D U-Net, and a feature map with 64 channels is
obtained from each of them. The architecture of 1D U-Net
and 2D U-Net is the same as shown in Fig. 2, except that
max pooling, convolution, and batch normalization are longi-
tudinal 1D and 2D operations, respectively. The feature maps
extracted by 1D U-Net and 2D U-Net are concatenated in the
channel direction to obtain the feature map with 128 chan-
nels. Next, the concatenated feature map is input to the layer
branch, which performs pixel-wise labeling of retinal layers,
and to the surface branch, which predicts the location of the
boundaries between retinal layers. In the layer branch, after
processing with res block and 1× 1 convolution, a layer map
representing the probability of a class for each pixel is out-
put by channel-wise softmax. If C is the number of classes,
i.e., the number of boundaries, the number of layers in the
layer map is C + 1. The layer branch is only used to calcu-
late the loss function in training as well as the conventional
methods [9, 10]. If the retina contains an edema, the edema
mask is created based on the edema label detected in the layer
branch and superimposed on the boundaries detected in the
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Fig. 2. Overview of the proposed method, where the numbers
indicate the number of channels of features.

surface branch. In this case, a layer map with C + 2 classes
is output since the class indicating the edema is added. In the
surface branch, after processing with res block and 1×1 con-
volution, surface maps representing the existence probability
of each boundary in each column are output by column-wise
softmax. Similar to FCBR [9] and SASR [10], we obtain the
sub-pixel level boundaries by weighting the sum of the exis-
tence probability of boundaries and the image coordinates in
each column as

bji =

H∑
h=1

pji (h) · h, (1)

where i indicates the column index of the image, j indicates
the class of boundaries, h indicates the row index of the im-
age, and H indicates the height of the image. pji (h) indicates
the existence probability of the boundary for class j at pixel
(i, h). Finally, a segmentation map of the retinal layers can be
obtained by mapping the retinal layers between the detected
boundaries.

The network used in the proposed method is trained to
minimize the loss functions for the layer branch and the sur-
face branch in the same way as the conventional methods
[9, 10]. For the layer branch, we use LCE+Dice, which is the
combination of the Dice loss [12] and cross-entropy loss be-
tween the layer map and the segmentation mask of the ground
truth. For the surface branch, we use LCE , which is the
cross-entropy loss between the surface map and the ground
truth, and LL1, which is the L1 loss between the location of
the detected boundaries and the ground truth. In addition to
the above loss functions, SASR [10] uses SmoothS loss to
keep the continuity of the boundaries between columns to es-
timate the smooth boundaries. If the connection of the bound-



aries between columns is horizontal on the image, SmoothS
loss becomes small, and therefore, SmoothS loss may result
in estimating boundaries close to a straight line. Therefore,
the smooth boundaries can be estimated by giving weights
to SmoothS loss according to each retinal layer. Since these
weights are hyperparameters, it is time-consuming to find the
optimal weights experimentally as the number of target reti-
nal layers increases. We therefore propose a new smooth loss,
LS , that does not require any hyperparameters, which is de-
fined by

LS =
1

C(W − 1)

C∑
j=1

W−1∑
i=1

{
(bji+1 − bji )− (gji+1 − gji )

}2

,

(2)
where i indicate the column index of the image, W indicates
the width of the image, j indicates the class of boundaries, C
indicates the number of classes, bji indicates the estimated co-
ordinate of the boundary j in column i, and gji indicates the
ground-truth coordinate of the boundary j in column i. By
training the network so that the difference between the esti-
mated boundary positions in adjacent columns is close to that
of the ground truth, we can obtain smooth boundaries, which
are independent of the type of retinal layers and images. The
total loss function used in the proposed method is given by

Lall = LCE+Dice + LCE + LL1 + αLS , (3)

where α indicates a weight parameter. We use α = 10 in this
paper.

The order of retinal layers is anatomically determined,
and therefore the boundaries must be detected according to
this order. In the conventional methods [9, 10], the topol-
ogy guarantee module is used to preserve the order of the
boundaries. If the positions of the boundaries are switched,
the order of the detected boundaries is made consistent with
the anatomical order by replacing the coordinate of the lower
boundary on the image with the upper coordinate. In FCBR
[9], the L1 loss is calculated after correcting the order of the
boundaries using the topology guarantee module. Correcting
the order based on boundaries detected at incorrect positions
may result in loss calculations with large errors. The pro-
posed method also uses the topology guarantee module, while
the L1 loss and the smooth loss are computed at the detected
boundaries before correction.

3. EXPERIMENTS

This section describes experiments to evaluate the effective-
ness of the proposed method for detecting the boundaries of
retinal layers from OCT images.

3.1. Datasets

We use three public datasets in the experiments: OCT MS
and Healthy Control (MSHC) dataset [13], Duke Cyst DME

(Duke DME) dataset [3], and World’s Largest Online An-
notated (WLOA) SD-OCT dataset [14]. MSHC consists of
OCT images acquired from 14 healthy subjects and 21 MS
patients. Each OCT image consists of 49 B-scan images with
496×1, 024 pixels. This dataset provides 9 boundaries as the
ground truth. We use 6 healthy subjects and 9 MS patients
from the end of the subject number for training and validation,
and the remaining for test, as in FCBR [9]. Of the 15 subjects
in the training and validation data, one healthy subject and
two MS patients are used for validation in ascending order of
subject number. Duke DME consists of OCT images acquired
from 10 DME patients. Each OCT image consists of 11 B-
scan images with 496 × 768 pixels. This dataset provides 8
boundaries and an edema mask as the ground truth. Note that
we excluded pixels for which no boundary is defined from the
calculation of the loss functions and the accuracy evaluation
in the experiments. We use 6 patients for training, 2 patients
for validation, and the remaining for test from the front of
the subject number. WLOA consists of OCT images acquired
from 115 healthy subjects and 269 AMD patients. Each OCT
image consists of 100 B-scan images with 512 × 1, 000 pix-
els. This dataset provides 3 boundaries as the ground truth. In
this dataset, the ground truth of the boundaries is defined only
around the central fovea. We use the regions of 512×400 pix-
els extracted from the center of 40 B-scan images around the
central fovea, as in SASR [10]. Note that we cannot flatten
9 OCT images under the same conditions as SASR [10], and
thus we do not use these images in the experiments1. We use
60% for training, 20% for validation, and the remaining for
test from 115 healthy subjects and 260 AMD patients from
the front of the subject number.

3.2. Experimental Condition

In training of the proposed method, Adam is used as the opti-
mizer, the batch size is 4, the learning rate is 0.0001, and train-
ing continues until convergence. We employ data augmenta-
tion of horizontal flipping, vertical scaling, Gaussian noise,
and contrast changes with probability 0.5 for each in training.
In vertical scaling, the image is scaled vertically by a factor
of 0.9–1.1 and is cropped to the same size before scaling. In
random contrast, the pixel values are multiplied by 0.8–1.2.
In addition, random erasing [15] is applied to the columns of
the image, since some pixels in the vertical direction have low
quality due to blood vessels.

We evaluate the accuracy of boundary detection with and
without flattening of the input image. Flattening estimates
BM using the intensity gradient method [11], and shifts each
column up and down to make BM horizontal, as in the con-
ventional methods [9, 10]. Note that upper and lower back-
ground areas are removed to reduce the memory usage as in
[9, 10]. For each dataset, the size of the images after flat-

1Flattening is failed in subject numbers 1003, 1026, 1044, 1046, 1054,
1127, 1217, 1218, and 1250 of AMD patients.



Table 1. Experimental results of each method for MSHC, Duke DME, and WLOA, where ∗ indicates the result obtained in our
reproduced experiments and the units for MAD and SD are µm.

Method w/ Flattening w/o Flattening
MSHC Duke DME WLOA MSHC Duke DME WLOA

FCBR [9] 2.83±0.99 6.70 2.78±3.31 — — —
FCBR∗ 2.79±0.41 5.04±0.35 2.37±1.04 4.15±5.94 4.86±0.16 1.97±1.19
SASR [10] — — 2.71±2.25 — — —
SASR∗ 2.94±0.58 11.82±1.47 2.49±1.18 3.58±3.04 15.63±5.10 2.16±1.15
1D U-Net 3.14±0.60 5.30±0.39 4.03±2.37 3.36±0.97 5.31±0.46 4.38±2.78
Proposed 2.77±0.48 4.47±0.10 2.19±1.23 3.33±1.62 4.78±0.14 1.90±1.19

tening is 128 × 1, 024 pixels for MSHC, 224 × 768 pixels
for Duke DME, and 320 × 400 pixels for WLOA. The ac-
curacy of boundary detection is evaluated by Mean Absolute
Distance (MAD) and Standard Deviation (SD) between the
detected boundaries and the ground truth. We compare the
accuracy of the proposed method with FCBR [9] and SASR
[10] to demonstrate the effectiveness of the proposed method.
We use our implementation for FCBR, and use the public
code2 for SASR. For FCBR and SASR, the results reported
in [9, 10] are compared for reference. Note that the exper-
imental conditions of FCBR for Duke DME and FCBR and
SASR for WLOA are different from those in this paper. We
compare the detection accuracy between the method using 1D
U-Net, which obtains the feature map with 128 channels us-
ing only 1D U-Net, and the proposed method to confirm the
effectiveness of the combination of 1D U-Net and 2D U-Net.
The feature map is input to the layer branch and the surface
branch as in the proposed method, and the layer map and the
boundaries are obtained.

3.3. Experimental Results and Discussion

Table 1 shows the experimental results for MSHC, Duke
DME, and WLOA. In MSHC, when focusing on the case of
flattening, MAD of FCBR [9] is 2.83, while the proposed
method has the highest accuracy with MAD of 2.77. When
focusing on the case without flattening, MAD of FCBR∗

is significantly high, and this method cannot deal with the
variation of retinal shape. MAD of SASR∗ is 3.58, which
may be highly accurate even without flattening, while MAD
of the proposed method is 3.33, which is highly accurate
in detecting the boundaries. Fig. 3 shows an example of
boundary detection results for the image without flattening
in MSHC. FCBR and SASR makes mistakes at the left side
of the image. 1D U-Net cannot detect smooth boundaries in
the center and left side of the image. The proposed method
detects smooth boundaries similar to the ground truth. In
Duke DME, MAD is relatively high since the images con-
tain edemas. The proposed method has lower MAD than the
conventional methods. The methods using 1D U-Net can

2https://github.com/ccarliu/Retinal-OCT-LayerSeg
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Fig. 3. An example of estimated boundaries for each method

detect boundaries independent of retinal shape since MAD
of these methods almost does not change with or without
flattening. The experimental results on WLOA are similar to
those of other datasets. The difference is that MAD is lower
for images without flattening in the proposed methods. The
structure of retinal layers may be corrupted by flattening since
the images cannot always be flattened exactly. Therefore, for
WLOA containing images that are difficult to flatten, the ac-
curacy of the proposed method is higher without flattening.

4. CONCLUSION

We proposed a boundary detection method for retinal layers
using the combination of longitudinal 1D U-Net and 2D U-
Net for retinal layer segmentation. The proposed method does
not require flattening of the OCT image and does not depend
on the shape of the retina due to the use of 1D U-Net. Through
a set of experiments using three public datasets, we demon-
strated the effectiveness of the proposed method compared to
conventional methods.
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