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ABSTRACT

We propose a method of segmenting retinal layers from optical co-
herence tomography (OCT) images for the diagnosis. The proposed
method estimates the pixel-wise labels of each retinal layer and each
layer surface position using convolutional neural network (CNN).
We introduce CNN to a multi-scale loss and a refinement module
to improve the accuracy of pixel-wise labels and layer surface po-
sition. Through experiments using a public OCT image dataset, we
demonstrate that the proposed method exhibits higher accuracy of
segmenting retinal layers than the state-of-the-art methods.

Index Terms— retinal layer, optical coherence tomography,
segmentation, CNN

1. INTRODUCTION

Optical coherence tomography (OCT), which can noninvasively ob-
tain high-resolution three-dimensional images of the retina, is widely
used for diagnosis in ophthalmology. The retinal layers need to be
segmented from OCT images to diagnose glaucoma and age-related
macular degeneration (AMD), which changes the thickness of retina.
An automatic and accurate segmentation method is required since
manual annotation of retinal layers is time-consuming and labor-
intensive.

Retinal Layer segmentation network (ReLayNet) is a pioneering
method using convolutional neural network (CNN) for retinal layer
segmentation [1]. ReLayNet is an encoder-decoder model like U-
Net [2] that assigns pixel-wise labels to retinal layers. Pixel-wise la-
beling does not always produce continuous and smooth retinal layer
surfaces, and does not guarantee the order of the retinal layers. To
address the above problems, the methods have been proposed to de-
tect the boundaries of the retinal layer simultaneously with pixel-
wise labels by dividing the final layer of 2D CNN into two branches
[3, 4]. The boundaries of the retinal layers can be used to obtain con-
tinuous and smooth retinal layer surfaces and to guarantee the order
of the retinal layers. The use of 3D CNN is suitable for considering
3D features of OCT data since OCT data is acquired as 3D data of
the retina. On the other hand, the resolution anisotropy and vertical
misalignment of a set of 2D images consisting of OCT data prevent
direct use of 3D CNN. To consider 3D features of OCT data, Liu et
al. proposed simultaneous alignment and surface regression (SASR)
using the 2D-3D hybrid network [5]. SASR consists of a 2D en-
coder to extract features from 2D images, a 3D decoder to align a
set of 2D images, and a 3D decoder to obtain boundaries of the reti-
nal layer and pixel-wise labels. SASR estimates boundaries of the
retinal layer and pixel-wise labeling by dividing the final layer of 3D
CNN into two branches as well as 2D CNN-based methods [3, 4],

resulting in no direct impact on each estimation. A method has been
proposed to detect the boundaries of the retinal layer after pixel-wise
labeling [6], while the accuracy of pixel-wise labeling influences the
accuracy of retinal layer boundary detection.

In this paper, we propose a 2D-3D hybrid network with multi-
scale loss and refinement module to improve the segmentation ac-
curacy of retinal layers. By introducing multi-scale loss, each layer
of 3D decoder is trained to reduce the loss of pixel-wise loss and
boundaries of retinal layers. In the refinement module, pixel-wise
labels and boundaries of the retinal layers obtained from 3D decoder
are combined in the channel direction, and both are estimated by
the convolution layers and the fully-connected layer to improve the
accuracy of both estimations. Through the experiments using the
public OCT dataset [7], we demonstrate the effectiveness of the pro-
posed method compared with the conventional methods.

2. METHODS

Fig. 1 shows an overview of the proposed method. The proposed
method consists of SASR [5] with multi-scale loss and refinement
modules. First, 2D encoder is used to extract features from OCT
volume data. Next, the displacement field, which indicates the dis-
placement between 2D images, is obtained from the features output
by each layer of 2D encoder using 3D decoder. The features ob-
tained by 2D encoder and the displacement field obtained by 3D
decoder are input to spatial transformer module (STM) [8] to cancel
the vertical misalignment in the feature maps. Then, the corrected
feature maps are input to 3D decoder to obtain layer maps and sur-
face distributions. The layer map represents pixel-wise labels of a
background and each layer. The surface distribution represents the
existence probability of boundaries at each pixel. The surface posi-
tion is the height of the boundary in each column, which is calculated
from the surface distribution. In the proposed method, a module for
calculating multi-scale loss is connected to 3D decoder. For each
decoder block of 3D decoder, we add two branches that perform
1 × 1 convolution, outputs layer map, surface distribution, and sur-
face position at each resolution of the feature map. By training to
minimize these losses, this module improves the accuracy of layer
map and surface distribution output by 3D decoder. In the proposed
method, a refinement module is also added after 3D decoder. This
module refines layer map and surface distribution in light of their
characteristics. We describe the details of the refinement module
and multi-scale loss in the following.
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Fig. 1. Overview of the proposed method consisting of SASR [5] with multi-scale loss and refinement module.

2.1. Refinement Module

This module improves the estimation accuracy of surface distribu-
tion and surface position by considering the features of both layer
map and surface distribution. The layer map and surface distribution
output from the 3D decoder are combined in the channel direction
and input to this module. This module consists of two convolution
blocks and a 1 × 1 convolution. The convolution block consists of
3D convolution layer, batch normalization layer, and ReLU, where
the number of channels of 3D convolution is 32. Then, the refined
surface distribution is obtained and the surface position is calculated
based on it. The loss functions are the cross entropy loss for the sur-
face distribution and the L1 loss and smoothS loss for the surface
position.

2.2. Multi-Scale Loss Function

We improve the accuracy of layer map and surface distribution out-
put by 3D decoder using multi-scale loss. We obtain the layer map,
surface distribution, and surface position from the features extracted
by each decoder block of 3D decoder, and train the loss for each of
them. For each of the three decoder blocks of 3D decoder, we calcu-
late the loss function at 1/4, 1/2, and 1 resolution, respectively. The
loss functions are Dice loss and cross entropy loss for layer map,
cross entropy loss for surface distribution, and L1 loss and smoothS
loss for surface position. Note that when the resolution is 1/4 and
1/2, we changed the following in calculating the loss functions. The
scaling down of the ground truth of the surface distribution is set to
1 if the area before scaling down contains 1, otherwise it is set to
0. The scale down of the ground truth of the layer map is the aver-
age of the pixel values of the region before scaling down. Since a
resolution reduction by 1/2 results in half the misalignment between
the estimated boundary and the ground truth, the inverse of the scale
factor is used as the weight for the L1 loss. The smoothS loss cal-

culates the vertical displacement so that the boundary estimates are
continuous. The inverse of the scale factor is used as the weights for
smoothS loss since the vertical displacement becomes smaller as the
resolution decreases.

3. EXPERIMENTS

In this section, we evaluate the accuracy of the proposed method for
retinal layer segmentation using the public dataset.

3.1. Dataset

In this paper, we use the SD-OCT public dataset [7]. The dataset
consists of OCT data from 269 AMD patients and 115 normal sub-
jects. Since only the region centered on the fovea is manually la-
beled, 512 × 400 × 40 voxels around the fovea are extracted and
used in the experiment. To reduce memory consumption, the reti-
nal B-scan image is flattened with the estimated Bruch’s membrane
(BM) using the intensity gradient method [9] as in FCBR [3] and
SASR [5]. Since BM estimation may fail due to AMD, the BM esti-
mate is shifted to be 64 pixels from the bottom of the image.

3.2. Experimental Condition

In this experiment, we evaluate accuracy by 5-hold cross-validation
without changing the ratio of AMD and normal subjects. In each
subset, 70% is used as training data, 10% as validation data, and
20% as test data. There are three manually annotated ground truth
labels: the inner aspect of the inner limiting membrane (ILM), the in-
ner aspect of the retinal pigment epithelium drusen complex (IRPE),
and the outer aspect of Bruch’s membrane (OBM). OCT is cropped
into 320×400×40-voxel patches as input. Adam is used as the op-
timizer, and training is performed for 120 epochs with a mini-batch



Table 1. Mean absolute distance [µm] of boundary position of retinal layers.

Methods
FCBR [3] SASR [5] SASR [5] Proposed Proposed Proposed

(experiment (experiment (our experiment) w/o before after
in [5]) in [5] ) multi-scale loss refinement refinement

ILM (AMD) 1.73± 2.50 1.76± 2.39 1.281± 1.163 1.276± 1.228 1.231 ± 1.250 1.301± 1.266
ILM (Normal) 1.24± 0.51 1.26± 0.47 1.166± 0.839 1.144 ± 0.900 1.148± 0.887 1.154± 0.876
IRPE (AMD) 3.09± 2.09 3.04± 1.79 2.710± 2.716 2.722± 2.676 2.721± 2.517 2.707 ± 2.601
IRPE (Normal) 2.06± 1.51 2.10± 1.36 1.860± 1.303 1.850 ± 1.317 1.892± 1.342 1.885± 1.358
OBM (AMD) 4.94± 5.35 4.43± 2.68 4.149± 3.532 4.129± 3.679 4.029± 3.400 4.022 ± 3.416
OBM (Normal) 2.28 ± 0.36 2.40± 0.39 2.660± 2.111 2.619± 1.989 2.594± 1.832 2.578 ± 1.768
Overall 2.78± 3.31 2.71± 2.25 2.458± 2.696 2.447± 2.734 2.428± 2.391 2.425 ± 2.610

size of 9 patches. The initial learning rate is set to 0.001 and reduced
by half if the loss does not improve after 10 consecutive epochs. In
the same way as in SASR [5], the weights of smoothS loss are set to
0, 0.3, and 0.5 for ILM, IRPE, and OBM, respectively. As data aug-
mentation, horizontal flipping is performed with a probability of 0.5.
The mean absolute distance (MAD) between the estimated boundary
position and the ground truth in each column is used as the evalua-
tion metric. The smaller the value of MAD, the more accurately the
boundary position is estimated.

3.3. Experimental Results

In this experiment, we compare the accuracy of the state-of-the-art
segmentation methods FCBR [3] and SASR [5]. FCBR refers to the
results in [5] since [3] used the different dataset and the code is not
publicly available. SASR refers to the results in [5] and shows the
result of experiments performed under the same condition as in this
paper using the publicly available code. Note that the paper [5] did
not perform cross-validation, which differs from the experimental
conditions in this paper. The proposed method is evaluated before
and after refinement and without multi-scale loss. The accuracy of
estimating the boundaries of the retinal layers for each method is
summarized in Table 1. The proposed method has higher estima-
tion accuracy than FCBR and SASR, and also has higher estimation
accuracy after refinement than before refinement. Fig. 2 shows the
results of boundary estimation of SASR and the proposed method
with/without multi-scale loss The proposed method can estimate the
detailed shape of the boundary, resulting in the shape close to the
ground truth. Fig. 3 shows the boundary estimation results before
and after refinement, and the layer map. The refinement module
improves the accuracy of boundary estimation by making the pixel-
wise labels consistent with the boundaries. These results indicate
that the proposed method can estimate the boundaries of retinal lay-
ers with high accuracy by considering pixel-wise labels.

4. CONCLUSION

We proposed a 2D-3D hybrid network with multi-scale loss and
refinement module to improve the segmentation accuracy of reti-
nal layers. Through the experiments using the public OCT dataset,
we demonstrate the effectiveness of multi-scale loss and refinement
module in retinal layer segmentation compared with the conven-
tional methods. In the future, we plan to investigate methods for
myopic eyes, where segmentation of retinal layers from OCT data
is extremely difficult, and the application of the proposed method to
ophthalmic diagnostic support.
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