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ABSTRACT

In this paper, we propose a method to refine depth maps estimated
by Multi-View Stereo (MVS) with Neural Radiance Field (NeRF)
optimization to estimate depth maps from multi-view images with
high accuracy. MVS estimates the depths on object surfaces with
high accuracy, and NeRF estimates the depths at object boundaries
with high accuracy. The key ideas of the proposed method are (i) to
combine MVS and NeRF to utilize the advantages of both in depth
map estimation, (ii) not to require any training process, therefore no
training dataset and ground truth are required, and (iii) to use NeRF
for depth map refinement. Through a set of experiments using the
Redwood-3dscan dataset, we demonstrate the effectiveness of the
proposed method compared to conventional depth map estimation
methods.

Index Terms— multi-view stereo, neural radiance fields, depth
map estimation

1. INTRODUCTION

Multi-View Stereo (MVS) reconstructs the 3D shape of a target ob-
ject from multiple images taken from different viewpoints [1]. MVS
estimates a depth map for each viewpoint that represents the distance
from the camera to the object using the correspondence between im-
ages and the camera parameters for each image. A 3D point cloud is
then reconstructed by integrating the depth map for each viewpoint
based on the camera position. Accurate estimation of the depth map
is necessary to obtain a highly accurate 3D point cloud.

A major MVS method based on image matching is COLMAP
[2, 3], which is an integrated method consisting of Structure from
Motion (SfM) [1] for camera parameter estimation and sparse 3D
reconstruction and MVS for dense 3D reconstruction. The accuracy
of depth estimation is high on object surfaces, while that is low at
object boundaries and in poor-texture regions. With the rapid devel-
opment of deep learning, learning-based MVS has been proposed,
such as CasMVSNet [4]. Depth maps are estimated for each view-
point based on features extracted by Convolutional Neural Network
(CNN) [5]. There are some problems that the camera parameters
are known in advance and that a large amount of training data is
required.

Recently, depth map estimation methods using Neural Radiance
Fields (NeRF) [6] have been proposed. NeRF estimates the radiance
field, which consists of lines connecting the camera and the object,
from multiple images taken from different viewpoints and gener-
ates arbitrary viewpoint images using the estimated radiance field.
Depth maps can also be estimated in the process of NeRF estima-
tion. NeRF can estimate the depths of object boundaries with high

accuracy. On the other hand, to generate high-quality arbitrary view-
point images and estimate accurate depth maps using NeRF, several
hundred images with close viewpoints and their accurate camera pa-
rameters are indispensable. Therefore, there are several methods to
reduce the above limitations of NeRF by using a depth map and/or
3D point clouds as initial values [7, 8, 9, 10]. Deng et al. proposed
Depth-Supervised NeRF (DS-NeRF) [10], which can generate arbi-
trary viewpoint images from a small number of images by training
NeRF using camera parameters and sparse 3D point clouds obtained
by SfM. The accuracy of the depth map obtained by DS-NeRF is not
always high since the loss function is defined based on a sparse 3D
point cloud. There is a method to estimate depth maps with high ac-
curacy by combining MVS and NeRF. RC-MVSNet [11] combines
CasMVSNet and NeRF to train CasMVSNet by unsupervised learn-
ing. Although unsupervised learning reduces the limitation on the
number of training data, the depth map cannot always be estimated
with high accuracy since NeRF is estimated based on the depth map
generated by CasMVSNet.

In this paper, we propose a method to refine depth maps esti-
mated by MVS with NeRF optimization to estimate depth maps from
multi-view images with high accuracy. MVS estimates the depths on
object surfaces with high accuracy, and NeRF refines them to esti-
mate the depths at object boundaries with high accuracy. The pro-
posed method estimates the depth map with COLMAP and refines it
based on DS-NeRF, making it applicable in an unsupervised process.
Through a set of experiments using the Redwood-3dscan dataset
[12], we demonstrate the effectiveness of the proposed method com-
pared to conventional depth map estimation methods.

2. PROPOSED METHOD

The proposed method consists of depth map estimation and depth
map refinement as shown in Fig. 1. Depth map estimation consists
of camera parameter estimation by SfM [2] and depth map estima-
tion by MVS [3] using COLMAP. Depth map refinement refines the
depth map estimated by COLMAP using a module based on DS-
NeRF [10]. The key ideas of the proposed method are (i) to combine
MVS and NeRF to utilize the advantages of both in depth map esti-
mation, (ii) not to require any training process, therefore no training
dataset or ground truth is required, and (iii) to use NeRF for depth
map refinement. The following describes the details of each process.

2.1. Depth Map Estimation Using COLMAP

COLMAP is a 3D reconstruction pipeline consisting of SfM and
MVS processes, and it is used as a standard method in MVS.
COLMAP SfM [2] uses SIFT [13] to find the correspondence be-
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Fig. 1. Overview of the proposed method consisting of depth map estimation by COLMAP and depth map refinement by NeRF.

tween multi-view images, and then calculates the camera parameters
and sparse 3D point clouds for each viewpoint based on the corre-
spondence. COLMAP MVS [3] estimates a depth map for each
viewpoint by multi-view image matching using PatchMatch [14],
taking the camera parameters and sparse 3D point clouds estimated
by SfM. Then, a dense 3D point cloud is obtained by integrating and
optimizing the depth maps. The camera parameters and depth maps
estimated by COLMAP are inputted into the subsequent refinement
module to refine the depth maps.

2.2. Depth Map Refinement Using NeRF

The depth map refinement module proposed in this paper is designed
based on DS-NeRF [10]. DS-NeRF takes multi-view images, cam-
era parameters, and sparse 3D point clouds estimated by SfM as in-
put and estimates the radiance field to generate arbitrary viewpoint
images using the estimated radiance field. Since DS-NeRF is esti-
mated based on a sparse 3D point cloud, we cannot always obtain
a highly accurate depth map. The proposed refinement module im-
proves the accuracy of the depth map by inputting the depth map
estimated by COLMAP. In addition, the proposed refinement mod-
ule does not require training to obtain the NeRF through iterative
optimization, while DS-NeRF requires training.

Multi-Layer Perceptron (MLP) [5] is iteratively optimized to es-
timate the RGB values and density of the 3D points from the coor-
dinates and line-of-sight vectors of the 3D points. The parameters
for coordinates and line-of-sight vectors of each 3D point on the ray
are obtained from the camera parameters estimated by SfM. Using
the estimated RGB values and densities, the image’s pixel values
from the same viewpoint as the input image are obtained by volume
rendering as described below. For a camera image I , the ray ri(t)
passing through the camera center o, pixel i (∈ I) in the camera
image, and the 3D point (xi, yi, zi) is defined by

ri(t) = o+ tdi, (1)

where t indicates the parameter of position on the line, and di is
the line-of-sight vector represented by θi and ϕi. Using the RGB
value c(ri(t),di) of a 3D point on the ray and the density σ(ri(t))
representing opacity, the RGB value of a pixel i, Ci, is reconstructed
by

Ci =

∫ tfar

tnear

Ti(t)σ(ri(t))c(ri(t),di) dt, (2)

where tnear and tfar indicate the range of volume rendering. Ti(t) is
the accumulated transmittance, which is calculated by

Ti(t) = exp

(∫ t

tnear

σ(ri(s)) ds

)
. (3)

The depth Di at a pixel i can be calculated using Ti(t) and σ(ri(t))
by

Di =

∫ tfar

tnear

Ti(t)σ(ri(t))t dt. (4)

The following two loss functions, i.e., the objective function of
optimization, are used to optimize NeRF in the proposed refinement
module. The first is the reconstruction loss LColor of pixel values.
LColor is defined as the mean squared error between the pixel values
in the camera image and those obtained by volume rendering from
NeRF, which is calculated by

LColor =
∑
j∈J

||Cj − Cgt
j ||2, (5)

where J indicates a set of pixels in the input image, Cj indicates
the pixel value at pixel j reconstructed by Eq. (2), Cgt

j indicates the
pixel value of pixel j in the camera image, and || · || indicates the
L2 norm. The second is the depth loss LDepth. LDepth is defined
as the mean squared error between the depth obtained by COLMAP
and the depth obtained by NeRF, which iscalculated by

LDepth =
∑
k∈K

||Dk −Dgt
k ||2, (6)

where K indicates the set of pixels at which the depth Dgt
k ob-

tained by COLMAP is available and Dk indicates the depth at pixel
k reconstructed by Eq. (4). Note that the depth loss is calculated
only for rays passing through the pixel where the depth obtained by
COLMAP is available. The total loss function L is calculated by

L = LColor + λdLDepth, (7)

where λd indicates a weight parameter that balances between recon-
struction and depth loss. We employ λd = 0.1 in this paper. MLP is
iteratively optimized to minimize loss L, and the depth map with the
smallest L after a given number of iterations is output as the refined
depth map. In this paper, the iterations are set to 20,000.



Table 1. Accuracy of depth map estimation for each method, where each result is the mean value of 14 scenes, and only pixels with an error
less than 30 cm are evaluated, except for SciMSE. In the upper rows, the accuracy is evaluated for a set of pixels where the depth exists in
both the depth map estimated by COLMAP and the ground truth (GT). In the lower rows, the accuracy is evaluated for a set of pixels where
the depth exists in both the depth map estimated by each method and GT.

Evaluation area Method SciMSE Abs Rel Sq Rel RMSE RMSE
δ < 1.25 δ < 1.252 δ < 1.253(linear) (log)

COLMAP ∩ GT
COLMAP [3] 0.041 0.030 0.288 5.953 0.050 93.899 96.227 97.490
DS-NeRF [10] 0.009 0.029 0.418 7.402 0.058 93.206 97.764 99.169

Proposed 0.006 0.030 0.266 5.864 0.043 96.701 98.652 99.393

Estimated ∩ GT CasMVSNet [4] 0.026 0.245 6.272 24.62 0.228 22.92 95.09 98.25
Proposed 0.006 0.081 0.899 10.66 0.084 95.59 99.44 99.94

3. EXPERIMENTS AND DISCUSSION

We describe the experiments for evaluating the performance of the
proposed method using the public multi-view image dataset. We
use the Redwood-3dscan dataset (Redwood) [12] in the experiments.
The dataset consists of video images of various objects and their 3D
mesh models captured by an RGB-D camera. The video images are
captured at 30 fps, and the image size is 640 × 480 pixels. This
dataset contains many video images that are difficult to reconstruct
because of a large number of poor texture regions and small image
sizes. In this experiment, we use 14 video images as the target and
11 frames extracted from each video as the input images. We com-
pare the accuracy of depth map estimation by COLMAP [3], DS-
NeRF [10], CasMVSNet [4], and the proposed method. Note that
RC-MVSNet [11] is not included in the comparison since the depth
map cannot be estimated from video images in Redwood.

The accuracy of the depth map estimation is evaluated using the
following accuracy evaluation metrics [15], taking the depths in mil-
limeters provided by Redwood [12] as the ground truth. In the fol-
lowing, yi denotes the depth of the pixel i in the estimated depth
map, y∗

i denotes the depth of pixel i in the ground-truth depth map,
and T denotes a set of pixels for evaluation.

(i) SciMSE = 1
2∥T∥

∑
i∈T

(
log yi

y∗
i
+ 1

∥T∥
∑

i∈T log
y∗
i

yi

)2

This is the scale-invariant evaluation metric, and the lower the value,
the higher the accuracy of the estimation.
(ii) AbsRel = 1

∥T∥
∑

i∈T ∥yi − y∗
i ∥/y∗

This is the mean absolute error between the estimated and ground-
truth depth maps, and the lower the value, the higher the accuracy of
the estimation.
(iii) SqRel = 1

∥T∥
∑

i∈T ∥yi − y∗
i ∥2/y∗

i

This is the mean squared error between the estimated and ground-
truth depth maps, and the lower the value, the higher the accuracy of
the estimation.
(iv) RMSE (linear) =

√
1

∥T∥
∑

i∈T ∥yi − y∗
i ∥2

This is the root mean squared error between the estimated and
ground-truth depth maps, and the lower the value, the higher the
accuracy of the estimation.

(v) RMSE (log) =
√

1
∥T∥

∑
i∈T ∥ log yi − log y∗

i ∥2

This is the root mean squared error between the logarithm of the
estimated and ground-truth depth maps, and the lower the value, the
higher the accuracy of the estimation.
(vi) δi = maxi(yi/y

∗
i , y

∗
i /yi)

This is the ratio of the ground-truth value to the estimated value or
the ratio of the estimated value to the ground-truth value among the
pixels used for evaluation. The higher the ratio of pixels below the
threshold, the higher the estimation accuracy.

Scales are adjusted in millimeters for the evaluation metrics
other than SciMSE since the scales of the depth maps estimated by
each method are different. The methods other than CasMVSNet use
COLMAP in the process of depth map estimation, and therefore the
scale is adjusted based on the sparse 3D point cloud obtained by
COLMAP SfM. The accuracy is evaluated for a set of pixels where
the depth exists in both the depth map estimated by COLMAP and
the ground truth. Only pixels with an estimation error less than
30cm are used for evaluation metrics other than SciMSE, in order
to eliminate the effect of outliers, which can be easily removed by
filtering. In comparison to CasMVSNet, a scale is adjusted based
on the depth map estimated by CasMVSNet and the ground truth.
The accuracy is evaluated for a set of pixels where the depth exists
in both the depth map estimated by CasMVSNet and the proposed
method and that of the ground truth.

Table 1 summarizes the accuracy of the depth map estimation
for each method. Compared to COLMAP and DS-NeRF, the pro-
posed method exhibits higher accuracy in the evaluation metrics, ex-
cept for AbsRel. The reason is that, in addition to the image re-
construction loss, NeRF is optimized based on the depth map esti-
mated by COLMAP MVS to generate a highly accurate depth map
in the volume rendering by NeRF. The proposed method has a low
SciMSE, resulting in a smoother estimation of the depth map than
the other methods. δ < 1.25 indicates the percentage of pixels for
which the error ratio between the estimated value and the ground
truth is smaller than 1.25. Since the proposed method has higher val-
ues than the other methods, the estimated depths have fewer outliers
and the depth map is refined. The proposed method exhibits higher
accuracy in all the evaluation metrics compared to CasMVSNet,
which is a training-based MVS. In particular, the proposed method
achieves significantly higher accuracy for SqRel, RMSE (linear),
and δ < 1.25. These results show that the iterative optimization
of NeRF can compensate for the outliers in the depth map estimated
by COLMAP.

Fig. 2 shows the camera image, the depth map of the ground
truth, and the depth map obtained by each method. The proposed
method can smoothly estimate the depth in the regions where
COLMAP cannot estimate the depth, for example, in “sculpture
#06287” and “telephone #06133”. The reason is that the color re-
construction loss considered in the iterative optimization of NeRF
makes it possible to reconstruct the depths by volume rendering
even in regions where the depths are missing. In “amp #05668” and
“childseat #04134”, the depth maps obtained by DS-NeRF contain
blurred depths near object boundaries and noise. On the other hand,
the depth map obtained by the proposed method has less noise and
blurring at the object boundaries, and the boundaries between the
object and the background are clear. Furthermore, in “radio #09655”
and “chair #05119”, the proposed method smoothly estimates both
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Fig. 2. Examples of the estimated depth map using each method, where depth maps are visualized as a color map with the minimum depth
value of 0 and the maximum depth value of GT.

object and floor shapes, although DS-NeRF does not estimate floor
shapes near the object. This is because the proposed method uses
the dense depth map estimated by MVS for optimizing NeRF, while
DS-NeRF uses only the depth of the sparse 3D point cloud for
training, and thus can estimate the depth of the whole image with
high accuracy. As described above, we confirmed that the proposed
method can improve the accuracy of the depth map estimated by
MVS.

4. CONCLUSION

We proposed a method to refine depth maps estimated by MVS with
NeRF optimization to obtain highly accurate depth maps from multi-
view images. The key idea is to combine the advantage of MVS
which can estimate the depths on object surfaces with high accuracy
and NeRF which can estimate the depths at object boundaries with
high accuracy. Through a set of experiments using the Redwood-
3dscan dataset [12], we demonstrated the effectiveness of the pro-
posed method compared to COLMAP [3], DS-NeRF [10], and Cas-
MVSNet [4]. In the future, we consider combining learning-based

MVS with NeRF for highly accurate depth map estimation and 3D
reconstruction methods.

5. REFERENCES

[1] R. Szeliski, Computer Vision: Algorithms and Applications,
Springer-Verlag New York Inc., 2010.

[2] J. L. Schönberger and J. Frahm, “Structure-from-Motion revis-
ited,” Proc. IEEE Conf. Computer Vision and Pattern Recog-
nition, pp. 4104–4113, Oct. 2016.

[3] J. L. Schönberger, E. Zheng, M. Pollefeys, and J. Frahm,
“Pixelwise view selection for unstructured multi-view stereo,”
Proc. European Conf. Computer Vision, pp. 501–518, 2016.

[4] X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, and P. Tan, “Cascade
cost volume for high-resolution multi-view stereo and stereo
matching,” pp. 2495–2504, June 2020.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
MIT Press, 2016.



[6] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “NeRF: Respresenting scenes as neural
radiance fields for view synthesis,” Computer Vision – ECCV
2020, pp. 405–421, Nov. 2020.

[7] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “PixelNeRF: Neu-
ral radiance fields from one or few images,” Proc. IEEE/CVF
Conf. Computer Vision and Pattern Recognition, pp. 4578–
4587, June 2021.

[8] Y. Wei, S. Liu, Y. Rao, W. Zhao, J. Lu, and J. Zhou, “Nerfing-
mvs: Guided optimization of neural radiance fields for indoor
multi-view stereo,” Proc. IEEE/CVF International Conf. Com-
puter Vision, pp. 5610–5619, Oct.

[9] B. Roessle, J. T. Barron, B. Mildenhall, P. P. Srinivasan, and
M. Nießner, “Dense depth priors for neural radiance fields
from sparse input views,” Proc. IEEE/CVF Conf. Computer
Vision and Pattern Recognition, pp. 12892–12901, June 2022.

[10] K. Deng, A. Liu, J. Y. Zhu, and D. Ramanan, “Depth-
supervised NeRF: Fewer views and faster training for free,”
Proc. IEEE/CVF Conf. Computer Vision and Pattern Recogni-
tion, pp. 12882–12891, June 2022.
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