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PAPER

Phase-Based Window Matching with Geometric Correction for
Multi-View Stereo

Shuji SAKAI†a), Nonmember, Koichi ITO†b), Takafumi AOKI†, Members, Takafumi WATANABE††, Nonmember,
and Hiroki UNTEN††, Member

SUMMARY Methods of window matching to estimate 3D points are
the most serious factors affecting the accuracy, robustness, and compu-
tational cost of Multi-View Stereo (MVS) algorithms. Most existing
MVS algorithms employ window matching based on Normalized Cross-
Correlation (NCC) to estimate the depth of a 3D point. NCC-based win-
dow matching estimates the displacement between matching windows with
sub-pixel accuracy by linear/cubic interpolation, which does not represent
accurate sub-pixel values of matching windows. This paper proposes a
technique of window matching that is very accurate using Phase-Only Cor-
relation (POC) with geometric correction for MVS. The accurate sub-pixel
displacement between two matching windows can be estimated by fitting
the analytical correlation peak model of the POC function. The proposed
method also corrects the geometric transformations of matching windows
by taking into consideration the 3D shape of a target object. The use of
the proposed geometric correction approach makes it possible to achieve
accurate 3D reconstruction from multi-view images even for images with
large transformations. The proposed method demonstrates more accurate
3D reconstruction from multi-view images than the conventional methods
in a set of experiments.
key words: multi-view stereo, window matching, geometric correction,
phase-only correlation

1. Introduction

Multi-View Stereo (MVS) is a technique used to reconstruct
the 3D shape of an object using a set of images taken from
different viewpoints [1]–[3]. High-quality 3D shapes have
recently been created from only camera images with the de-
velopment of computer and camera technologies and with
the advances in 3D reconstruction technologies. Therefore,
MVS has attracted considerable attention from various fields
such as industry, medical care, and the arts. MVS algo-
rithms consist of combinations of many processes, i.e., se-
lection of views, reconstruction of 3D points by local win-
dow matching, removal of outliers, generation of 3D meshes
from 3D point clouds, and optimization of 3D meshes. Win-
dow matching to determine the 3D coordinates of objects is
the most important factor in the processes for the MVS algo-
rithm, since its performance affects the accuracy, robustness,
and computational cost of the MVS algorithm.
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Window matching based on Normalized Cross-
Correlation (NCC) has been used in most MVS algo-
rithms [1], [4]–[10]. Goesele et al. [4] applied NCC-based
window matching to the plane-sweeping approach to gener-
ate an accurate depth map by cumulating the correlation val-
ues calculated from multiple stereo image pairs with chang-
ing depths. Campbell et al. [7] generated a more accurate
depth map than that with Goesele et al.’s method [4] by us-
ing the matching results from neighboring pixels to improve
the accuracy of 3D reconstruction and reduce the number of
outliers. Bradley et al. [6] and Furukawa et al. [9] achieved
robust window matching by transforming the matching win-
dow not only according to depth but also the normal of the
3D points.

NCC-based window matching was used in these MVS
algorithms to evaluate the likelihood of 3D points. There-
fore, the optimal 3D point has to be found by iteratively
computing NCC values with changing parameters of 3D
points such as depth and the normal. For instance, the plane-
sweeping approach used in Goesele et al.’s algorithm [4]
computes NCC values with discretely changing depths of
3D points and selects the depth with the highest NCC value
as the optimal one. Since a significantly small step size for
depth is required for accurate 3D reconstruction, the num-
ber of matches is also significantly increased. In addition,
although NCC-based window matching estimates the dis-
placement between matching windows with sub-pixel accu-
racy by linear/cubic interpolation, such interpolation does
not represent accurate sub-pixel values of matching win-
dows.

Addressing the above problems, we proposed an effi-
cient window matching method using Phase-Only Correla-
tion (POC) for MVS [11]. POC (or simply “phase correla-
tion”) is a kind of correlation function calculated only from
the phase components of 2D Discrete Fourier Transforms
(DFTs) of given images [12]–[14]. The sub-pixel displace-
ment between images can be estimated using the analyti-
cal peak model of a POC function [14], resulting in accu-
rate depth estimation. However, the accuracy of matching
with POC-based method deteriorates in stereo image pairs
that have relatively large image transformation, since it is
assumed that the image transformation between matching
windows only has translational displacement. Although the
proposed method demonstrated accurate 3D reconstruction
in stereo image pairs with a narrow baseline, the error in re-
construction was increased in stereo image pairs with wide
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baselines.
This paper proposes a geometric correction technique

to improve the accuracy of the proposed method, where the
image transformation between a stereo image pair is ap-
proximated by local scaling, skewing, and translations. The
matching windows are defined by taking into consideration
approximated image transformation. It is important to de-
fine the shape of matching windows so as not to change
the shape of the POC function to reduce the effect of local
scaling and skewing. The proposed method with geometric
correction makes it possible to achieve accurate 3D recon-
struction from multi-view images. This paper also makes
new datasets to evaluate MVS algorithms, which consist of a
set of images with camera parameters and their ground-truth
data measured by a 3D digitizing system. The proposed ap-
proach demonstrated more accurate 3D reconstruction from
multi-view images than conventional methods in a set of ex-
periments using public and our own datasets.

The rest of the paper is organized as follows: Section
2 describes the fundamentals of POC for MVS. Section 3
describes the POC-based window matching with geometric
correction for MVS. Section 4 demonstrates a set of exper-
iments using public and our own datasets. Section 5 ends
with some concluding remarks.

2. Phase-Only Correlation for Multi-View Stereo

This section describes the fundamentals of POC-based win-
dow matching for MVS [11]. POC is an image matching
technique using the phase components in DFTs of given
images and is robust against changes in illumination and
noise. Furthermore, the most important feature of POC is
that the POC function calculated from two images has an
analytical peak model [14]. Translational displacement with
sub-pixel accuracy can be estimated by fitting the analytical
peak model to the calculated data array around the correla-
tion peak, where the height of the peak and the location of
the peak are fitting parameters.

POC is used in local window matching in MVS be-
tween multi-view images. Stereo image pairs are gener-
ated from multi-view images and then local translational
displacement between stereo image pairs is estimated us-
ing POC. Since the translational displacement between the
stereo image pairs is limited to the direction of epipolar
lines, 1D POC-based image matching [15] is used in MVS.
The POC functions calculated from stereo images with dif-
ferent viewpoints indicate different peak positions due to the
difference in camera positions.

To address the above problem, we introduce the dispar-
ity normalization technique to POC-based window match-
ing [11]. Let V = {V0, · · · ,VH−1} be multi-view images
with known camera parameters. We consider reference view
VR ∈ V and neighboring views C = {C0, · · · ,CK−1} ⊆
V − {VR} to be input images, where H is the number of the
multi-view images and K is the number of the neighboring
views. We generate K pairs of rectified stereo images V rect

R,i -
Crect

i (i = 0, · · · ,K − 1) from VR and C [1]. The relationship

among the 3D point M = [X,Y,Z]T in the camera coordi-
nate of VR and the rectified stereo image V rect

R,i -Crect
i (Ci ∈ C)

with disparity di is defined by

M =

 X
Y
Z

 = Ri

 (ui − u0i)Bi/di

(vi − v0i)Bi/di

βiBi/di

 , (1)

where (ui, vi) is the corresponding point of M in V rect
R,i ,

(u0i, v0i) is the optical center of V rect
R,i , βi is focal length and Bi

is baseline length between V rect
R,i -Crect

i . Ri denotes a rotation
matrix of the reference view VR for stereo rectification and
is given by

Ri =

 Ri11 Ri12 Ri13

Ri21 Ri22 Ri23

Ri31 Ri32 Ri33

 . (2)

The relationship between di in each rectified stereo pair and
the normalized disparity d can be written as

di = sid, (3)

where si denotes the scale factor for the disparity di and is
given by

si =
(Ri31(ui−u0i)+Ri32(vi−v0i)+Ri33βi)Bi

1
K

K−1∑
l=0

(Rl31(ul−u0l)+Rl32(vl−v0l) + Rl33βl)Bl

. (4)

We can integrate the POC functions calculated from multi-
ple stereo image pairs into the same coordinate system by
using the normalized disparity d.

We take into consideration the problem of obtaining a
true 3D point M from the initial 3D point M′ on the refer-
ence viewpoint using POC-based window matching in the
following. Note that the initial 3D point M′ is selected ac-
cording to the design of the MVS algorithm. Its simplest
form is to employ the brute force search to select the ini-
tial 3D point M′ as used in [4]. Figure 1 overviews depth
estimation using POC-based window matching. The initial
position of the 3D point M′ is projected onto the rectified
stereo image pair V rect

R,i -Crect
i , and the coordinates on V rect

R,i and
Crect

i are denoted by mi = [ui, vi]T and m′i = [u′i , v
′
i]

T , respec-
tively. The matching windows fi and gi are extracted from
V rect

R,i centered at mi with size siw×L and Crect
i centered at m′i

with size siw×L, respectively, where w×L is the unified size
of the matching window. si is the scale factor for disparity
normalization. Scaling image signals fi and gi by 1/si, the
size of the matching windows is normalized to w× L, where
we denote f̂i and ĝi as the scaled version of the matching
windows fi and gi, respectively. The 1D POC function r̂i

between f̂i and ĝi is then calculated. Thus, 1D POC func-
tions r̂i (i = 0, · · · ,K − 1) have the same peak position. The
average POC function r̂ave calculated from POC functions r̂i

(i = 0, · · · ,K − 1) is used to improve the accuracy of depth
estimation. Note that we average POC functions r̂i whose
peak value αi is larger than a threshold thcorr, to reduce the
effects of occlusion and object boundaries. The correlation
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Fig. 1 Depth estimation using POC-based window matching: The initial 3D point M′ is projected
onto stereo image pairs. POC functions r̂i are calculated from the matching windows which are extracted
from each stereo image pair. The average POC function r̂ave is calculated from the POC functions. The
true 3D point M is obtained by estimating the peak position of r̂ave.

peak position δ with sub-pixel accuracy is estimated by fit-
ting the analytical peak model of the POC function to r̂ave.
The true position of the 3D point M is obtained by calcu-
lating the displacement between the initial 3D point M′ and
the true 3D point M from the translational displacement δ
as

M = Ri

 (ui − u0i)Bi/(si(d′ − δ))
(vi − v0i)Bi/(si(d′ − δ))
βiBi/(si(d′ − δ))

 , (5)

where d′ is normalized disparity of the initial 3D point M′.
Only one calculation of the POC function makes it possible
to calculate the true position of 3D point M with sub-pixel
accuracy from the initial 3D point M′.

3. POC-Based Window Matching with Geometric Cor-
rection for Multi-View Stereo

This section describes POC-based window matching with
geometric correction for MVS, which is robust against im-
age transformation between stereo image pairs.

The image transformation between stereo image pairs
is represented by nonlinear deformation depending on the
3D shape of the target object and the positions of cam-
eras. Such nonlinear deformation between stereo image
pairs is approximated in the proposed method by local scal-
ing, skewing, and translations. POC-based window match-
ing is done between rectified stereo pairs as was explained in
Sect. 2. After stereo image pair is rectified, epipolar lines are
parallel to the horizontal or vertical axis. Therefore, the im-
age transformation between the rectified stereo image pair
is horizontally or vertically limited. Assuming that each lo-
cal region of the object is approximated by a 3D plane, the
image transformation between the matching windows on the
rectified reference view V rect

R,i and on the rectified neighbor-

ing view Crect
i can be approximated by scaling and skewing

as shown in Fig. 2 [16].
The following focuses on the rectified stereo pair V rect

R,i -
Crect

i to explain how scale factor ξi and skew angle κi are
calculated when given 3D point Mi = [Xi, Yi,Zi]T and its
normal vector ni = [nX,i, nY,i, nZ,i]T . Note that the coordinate
system of Mi and ni, which are the camera coordinates of
the rectified reference view V rect

R,i , rotates depending on the
camera parameter of the neighboring view Ci in stereo recti-
fication. First, we describe the image transformation model
between the rectified stereo image pair when assuming that
the local region of the object is represented by a 3D plane.
Next, we describe the reduction of the effect of scaling and
skewing in the matching windows. Then, we present the
proposed 3D reconstruction method using POC-based win-
dow matching with geometric correction. In the following,
we omit the suffix i, which is the index number of stereo
pairs, since the scale factor and the skew angle are indepen-
dently calculated for each stereo pair.

3.1 Binocular Viewing of Plane in Rectified Stereo Pair

At first, we consider that epipolar lines are parallel to the
horizontal axis due to stereo rectification as shown in Fig. 2.
The rotation matrix Rcam and the translation vector tcam be-
tween the rectified stereo pair are given by

Rcam =

 1 0 0
0 1 0
0 0 1

 , tcam =

 B
0
0

 . (6)

The intrinsic parameters A of the reference view V rect
R and

A′ of the neighboring view Crect are also given by

A =

 β 0 u0

0 β v0
0 0 1

 , A′ =

 β 0 u′0
0 β v0
0 0 1

 . (7)
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Fig. 2 Matching windows for POC-based window matching with geometric correction for MVS: As-
suming that each local region of the object is approximated by a 3D plane, the image transformation
between the matching windows can be approximated by scaling and skewing. Local scaling can be
reduced by scaling the size of window on the reference view. Local skew can be reduce by skewing the
matching window on the neighboring view.

Using the projection from the 3D plane defined by n and M,
the geometric relation between the coordinate m on the ref-
erence view V rect

R and the coordinate m′ on the neighboring
view Crect is written by

sm̃′ = Hm̃. (8)

The transformation matrix H is defined by

H = A′
(
Rcam +

tcamnT

M · n

)
A−1 (9)

=

 1 + BnX
M·n

BnY
M·n du

0 1 0
0 0 1

 , (10)

where du is given by

du =
(−u0nX − v0nY + βnZ)B

M · n + u′0 − u0. (11)

As observed in Eq. (10), the transformation matrix H rep-
resents an affine transformation between the rectified stereo
pair whose target object is a 3D plane. In particular, the
transformation matrix H consists of scaling, skewing, and
translational displacement in the horizontal axis. In the case
that epipolar lines are parallel to the vertical axis, the same
discussion can be applied by replacing u and v. As men-
tioned above, the image transformation between the recti-
fied stereo pair can be represented by scaling, skewing, and
translational displacement when it assumes that the local re-
gion of the object is approximated by a 3D plane [16].

3.2 Reduction of Effect of Scaling and Skewing in Match-
ing Windows

The key idea of the proposed method is to improve the accu-

racy of depth estimation of POC-based window matching by
reducing the effect of image transformation between match-
ing windows such as scaling and skewing. We do not take
into consideration the translational displacement du in POC-
based window matching, since du represents a displacement
between the center coordinates of matching windows, which
is determined by the initial 3D point M′. The matching win-
dow has to be defined so as to reduce the effect of scaling
and skewing.

In the proposed method, we reduce the effect of image
transformation between matching windows by scaling the
size of matching window on the reference view by ξ and
by skewing the matching window on the neighboring view
by κ as shown in Fig. 2. In the case of horizontal stereo
rectification, the scale factor ξ and the skew angle κ are given
from Eq. (10) as follows:

ξ =
(
1 +

BnX

M · n

)−1

, κ =
BnY

M · n. (12)

Meanwhile, in the case of vertical stereo rectification, ξ and
κ are given as follows:

ξ =
(
1 +

BnY

M · n

)−1

, κ =
BnX

M · n. (13)

Local scaling between the stereo image pair can be re-
duced by scaling the size of matching windows on V rect

R,i into
ξisiw × L pixels and on Crect

i into siw × L pixels. Note that
if the matching window on Crect

i is scaled by 1/ξi instead of
scaling the matching window on V rect

R,i , the peak coordinate
of r̂i is not the same as the peak coordinate of r̂ j calculated
from a different stereo image pair such as V rect

R, j -Crect
j , since

the peak coordinate of the POC function r̂i is scaled by ξi.
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In addition, the matching window on the neighboring view
is transformed by κi to reduce the local skew between the
stereo image pair, where each vertical line of the matching
window is translated on the axis perpendicular to the epipo-
lar line.

3.3 3D Reconstruction Using POC-Based Window Match-
ing with Geometric Correction

We apply the proposed window matching method to a sim-
ple plane-sweeping approach to reconstruct 3D point clouds
from multi-view images [17] as one of applications of the
proposed method. In the basic plane-sweeping approach,
the depth of the 3D point is determined by iteratively evalu-
ating a similarity between matching windows with changing
depths of the 3D point on the viewing ray on the reference
view. As mentioned in Sect. 2, the initial depth is selected
according to the design of the MVS algorithm. In this paper,
we employ the brute force search to estimate the true depth
as well as other window matching method such as [4], i.e.,
the initial depth is selected from a possible depth range with
the step size ∆Z. In addition, the proposed method deter-
mines the scale factor and the skew angle between matching
windows using the normal vector. Since the normal vectors
of the object surface are not known, we select the optimal
normal vectors having the highest correlation peak of the
POC function by repeating POC-based window matching
with changing normal vectors [17]. Given the initial depth
of the 3D point, the proposed POC-based window match-
ing method can estimate the true depth with sub-pixel accu-
racy within the range corresponding to ± 1/4 of the window
size w by one window matching. The effective information
of POC function with w pixels× L lines is limited to w/2
pixels× L lines, since we apply a Hanning widow with w/2-
half width to the POC function to reduce the boundary ef-
fect [15]. Hence, the proposed POC-based window match-
ing method allows us to employ relatively large step sizes
within a quarter of the matching window size. On the other
hand, NCC-based window matching methods have to em-
ploy smaller step size such as ∆Z = 1/10 and ∆Z = 1 than
the proposed method in order to reconstruct the accurate 3D
points, resulting in the increase in the computational cost.
We empirically confirmed that the accuracy of NCC-based
window matching methods are significantly dropped when
the step size ∆Z is set within a quarter of the matching win-
dow size as well as the proposed method.

We calculate a depth on the coordinate m = [u, v]T in
the reference view VR with the following procedure from all
images and camera parameters of the reference view VR and
a set of neighboring views C.
Step1: Create a set of rectified stereo image pairs V rect

R,i -Crect
i

(i = 0, · · · ,K − 1) from VR and C.
Step2: Evaluate scale factor si for each stereo image pair of
image coordinate m on VR.
Step3: Calculate POC function r̂ave between the multi-view
images with changing the depth and the normal vector n of
3D point M, where the matching windows for each stereo

pair are transformed by scaling factor ξi and skew angle κi
calculated from n and M. We have considered nine can-
didates for n in this paper, which are obtained by rotating
the normal vector facing VR on the X and Y axes within the
range of ±π/8. Note that the proposed method does not limit
the number of candidates to nine, i.e., this setting is an de-
sign example of the proposed method. The number of can-
didates or the candidate selection method can be designed
depending on the MVS algorithm. As mentioned above, the
use of the proposed POC-based window matching method
makes it possible to employ relatively large step sizes. In
this paper, the step size of depth for M corresponds to a
quarter of the matching window size on the stereo images.
Step4: Select M and n having the highest correlation peak
of r̂ave. Further, update M according to the peak position of
r̂ave.

4. Experiments and Discussion

This section describe our evaluation of the accuracy of re-
construction and the computational cost with a variety of
window matching methods.

4.1 Dataset for MVS Evaluation

One of the famous datasets for MVS algorithms is the Mid-
dlebury MVS dataset [2], [18]. The accuracy of window
matching methods cannot be evaluated using this dataset,
since this dataset is created for the purpose of evaluating the
accuracy of the MVS algorithm including in window match-
ing, view selection, mesh model optimization, etc. On the
other hand, the purpose of this paper is to explore the ac-
curate window matching method. Therefore, we do not use
the Middlebury MVS dataset to evaluate window matching
methods in this paper.

For the purpose of evaluating the accuracy of window
matching methods, we make MVS datasets consisting of a
set of multi-view images, their camera parameters, and the
ground-truth mesh model. Figure 3 shows examples of our
MVS dataset. The target objects are figurines of a cat and a
dog. We use a camera (Point Gray, Flea 3: FL3-U3-13Y3M-
C) with 1,280×1,024 pixels. The images are taken with the
camera by changing the height of the camera with 3 patterns
and the rotation angle of the turntable with 20 patterns. A
3D mesh model for each target object is measured with the
3D digitizing system (Steinbichler, COMET5) for quantita-
tive performance evaluation. The intrinsic parameters of the
camera are estimated using the method of camera calibra-
tion proposed by Zhang et al. [19] in advance. The extrinsic
parameters are estimated by minimizing the reprojection er-
ror of SIFT-based image matching [1], [16], [20], where the
reprojection error was calculated using a ground-truth mesh
model.

In the experiments, we also employ the dataset
“Fountain-P11” [3], [21]. The dataset “Fountain-P11” in-
cludes multi-view images (11 images), camera parame-
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Fig. 3 Example of an image, a ground-truth mesh model, and camera positions in our MVS dataset
(Upper: dog, Lower: cat).

ters†, and a mesh model of a target object, which can be
used as the ground-truth. We can evaluate the accuracy
of 3D point clouds obtained from window matching meth-
ods, since the ground-truth mesh data is publicly available
in [21].

4.2 Window Matching Methods

We compare the accuracy of 3D point clouds obtained by
window matching methods, since the purpose of this paper
is not to propose the whole MVS algorithm but the win-
dow matching method for the MVS algorithm. Although
some of conventional MVS algorithms employ outlier re-
moval and mesh optimization to improve the accuracy of
3D reconstruction, we evaluate the accuracy of 3D point
clouds except for such improvement techniques in the ex-
periments. We classify the window matching methods used
in the experiments according to type of matching method,
sub-pixel estimation, and geometric correction in Table 1. In
the experiments, we apply eight window matching methods
to the plane-sweeping approach and evaluate their recon-
struction accuracy and computational cost. Both for NCC-
and POC-based window matching with geometric correc-
tion, we consider nine candidates of the normal vector to
estimate a transformation matrix. The following shows de-
tailed description for each method.
NCC+BF (+Homography)

NCC is used for window matching between multi-view

†We empirically confirmed that the camera parameters avail-
able at [21] had an error. Therefore, we optimized the extrinsic
parameters according to the same way used in our datasets.

images. In BF, NCC values are computed with changing
depth Z by the step size ∆Z and the depth with the high-
est NCC value is selected as the optimal one. In this paper,
we set the step size ∆Z corresponding to 1/10 pixels on the
stereo image. The size of window for NCC-based matching
is 17 × 17 pixels, which is equivalent in terms of the effec-
tive signal size to that for the POC-based window matching
method. The threshold value for averaging the NCC values
calculated from stereo image pairs is 0.5. When reducing
the effect of image transformation of matching windows in
NCC-based window matching methods, the image transfor-
mation model is represented by the projective transforma-
tion between matching windows. In this case, we do not
apply stereo rectification to images.
NCC+FF (+Homography)

In FF, the depth Z with sub-pixel accuracy is estimated
by fitting the peak model function around the depth having
the maximum NCC value. In this paper, the parabola func-
tion is fitted to NCC values around Z having the maximum
NCC value obtained by BF with ∆Z = 1 pixel. In this case,
we do not apply stereo rectification to images.
NCC+LM (+Homography)

In LM, the depth Z with sub-pixel accuracy is estimated
by nonlinear optimization around the depth having the maxi-
mum NCC value, where Z is a parameter to be optimized. In
this paper, the NCC value is maximized by the Levenberg-
Marquardt algorithm, where the initial value is set to the
NCC value obtained by BF with ∆Z = 1 pixel. In this case,
we do not apply stereo rectification to images.
POC (+Affine)

POC is used for window matching between multi-view
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Table 1 A summary of window matching methods for MVS used in the experiments.

Matching Sub-pixel estimation Geometric correction Reference
Brute force — Goesele 2006 [4]

(BF) Homography Bradley 2008 [6]

NCC
Function fitting —

(FF) Homography
Nonlinear optimization —

(LM) Homography Furukawa 2010 [9]

POC
Function fitting —

Proposed method(FF) Affine

images. The peak values of the POC function are computed
with changing depth Z by the step size ∆Z and the depth
with the highest peak value is selected as the optimal one. In
this paper, we set the step size ∆Z corresponding to a quar-
ter of the matching window size on the stereo images. The
threshold value thcorr for the peak value of the POC func-
tion is 0.5. The size of matching windows w × L is 32 × 17
pixels. Note that effective information on the POC func-
tion with 32 × 17 pixels corresponds to information on the
matching window with 17×17 pixels of NCC-based window
matching, since we apply a Hanning window with w/2-half
width to the POC function to reduce the boundary effect in
DFT computation [15]. When reducing the effect of image
transformation of matching windows in POC-based win-
dow matching methods, we employ the method described in
Sect. 3.3. Note that the combination of stereo rectification
and the affine transformation corresponds to the homogra-
phy transformation used in NCC-based window matching
methods.

4.3 Accuracy of 3D Reconstruction

We evaluate the accuracy of 3D point clouds obtained by
each method using the error rate between the estimated
depth and the true depth. We select 21 images from “dog”
and “cat” and 9 images from “Fountain-P11” as the refer-
ence view VR and select 2–4 images in order of distance
from each reference view VR as neighboring views C. Note
that all the images including in the dataset are used as ei-
ther a reference view or a neighboring view. We estimate
the depths of all the image coordinates on VR from VR and C
using the window matching methods and evaluate the error
rate e defined by

e =
|Zcalculated − Zground-truth|

Zground-truth
, (14)

where Zcalculated is the estimated depth and Zground-truth is
the true depth on VR obtained from the ground-truth mesh
model. Note that, in the case of “Fountain-P11,” we esti-
mate the depth from the pixel coordinates on VR with the
spacing of 4 pixels in order to reduce the processing time.
We do not estimate the depth from the area which does not
exist ground-truth mesh model on VR such as background
and also do not evaluate matching error on such area.

Figure 4 shows histograms of error rates for each
dataset. The histograms are plotted with an interval of

0.01% along the vertical axis. The upper row of Fig. 4 illus-
trates histograms between error rates and the number of re-
constructed 3D points having the associated error rate, while
the lower row illustrates histograms between error rates and
frequencies of reconstructed 3D points having the associated
error rate. Table 2 shows a summary of the total number of
reconstructed 3D points and the median of error rates for
each dataset. Although we do not apply any outlier removal
method to the reconstructed 3D point clouds, the total num-
ber of 3D points are different from each method, since we do
not estimate the depth on the point whose matching scores
are below threshold for all the views. Hence, we observe a
different trend between histograms for the number of points
and the frequency.

First, we discuss the experimental results using our
datasets “dog” and “cat.” The 3D point clouds reconstructed
by POC+Affine, i.e., our proposed method, have a signifi-
cant number of points with low error and a low number of
points with high error compared with the 3D point clouds
reconstructed by other methods. The results for POC indi-
cate the same trend in those for POC+Affine as shown in
Fig. 4 and Table 2. The accuracy of 3D points reconstructed
by POC is comparable with that by POC+Affine, while the
number of 3D points is less than POC+Affine. When im-
age transformation between matching windows is large, the
peak value of POC function is significantly dropped. If the
peak value is smaller than the threshold thcorr, the 3D point is
not reconstructed from such matching windows. Therefore,
the number of 3D points of POC is less than POC+Affine,
since image transformation between matching windows is
not corrected in the case of POC.

Next, we discuss the results using “Fountain-P11.”
The number of 3D points reconstructed by POC and
POC+Affine is less than that by NCC-based methods. On
the other hand, POC+Affine exhibits good performance
compared with other methods, focusing on the histogram
of frequencies and the median of error rates. This fact indi-
cates that if the 3D point is reconstructed by the proposed
method, its accuracy is significant high. Figure 5 shows
reconstructed 3D point clouds and their error maps. Note
that outliers including in reconstructed 3D point clouds in
Fig. 5 are removed by hand for easy-to-understand illustra-
tion. Although there are some points having large error,
i.e., red points, regardless of methods, the number of points
having low error, i.e., blue points, for POC is more than
that for NCC+LM. Similarly, the number of points having
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Fig. 4 Histograms of error rates (Upper: Histogram between error rates and the number of recon-
structed points, Lower: Histogram between error rates and frequencies of reconstructed points).

Table 2 Summary of experimental results.

# of points [×106] Median of error rates [%]
dog cat Fountain dog cat Fountain

NCC+BF 7.51 8.26 2.53 0.0688 0.0699 0.0804
NCC+FF 7.46 8.21 2.52 0.0684 0.0673 0.0795
NCC+LM 7.46 8.21 2.53 0.0626 0.0629 0.0799
POC 6.15 7.48 2.40 0.0351 0.0310 0.0636
NCC+BF+Homography 7.91 9.30 2.61 0.0564 0.0496 0.0669
NCC+FF+Homography 7.88 9.29 2.60 0.0569 0.0478 0.0671
NCC+LM+Homography 7.88 9.29 2.60 0.0519 0.0454 0.0669
POC+Affine 7.21 9.06 2.45 0.0348 0.0307 0.0604

low error (blue points) for POC+Affine is more than that
for NCC+LM+Homography. As observed in the above, the
proposed method exhibits more accurate 3D reconstruction
than that with all the NCC-based window matching meth-
ods.

4.4 Computational Cost

We evaluate the computational cost to estimate the depth of
one point on the reference view for each method.

POC-based window matching can estimate the true
depth within the range corresponding to ± 1/4 of the win-
dow size by one window matching. For NCC-based window
matching, we evaluate the computational cost required for
depth estimation within the search range equivalent to that
in POC-based window matching. The computational cost
is evaluated by the number of additions, multiplications,
divisions, and square roots required for window match-
ing. Table 3 shows the computational cost to estimate

the depth of one point on the reference view using each
method. The total cost is calculated as the weighted sum
of the number of arithmetic operations, where the weights
associated with additions, multiplications, divisions, and
square roots are 3, 5, 6, and 6, respectively. We deter-
mine the weights based on the latencies of corresponding
instructions in Intel R⃝CoreTMMicroarchitecture [22]. As for
NCC+LM (+Homography), we evaluate the average com-
putational cost in the Fountain-P11 dataset, since its com-
putational cost depends on the input image. POC (+Affine)
includes the computational cost of stereo rectification. The
computational cost of stereo rectification is divided by the
number of points and added to that of POC (+Affine), since
stereo rectification is applied to the whole image once.

Focusing on the type of matching method and sub-
pixel estimation, POC-based methods require lower com-
putational cost than NCC-based methods. By reducing the
effect of image transformation, the computational cost in-
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Fig. 5 Reconstructed 3D point clouds and visualized reconstruction error map: “dog” (1∼2 rows),
“cat” (3∼4 rows), and “Fountain-P11” (5∼6 rows).

Table 3 Computational cost to estimate the depth of one point on the reference view.

Additions Multiplications Divisions Square roots Total cost
NCC+BF 751,400 312,460 5,780 5,780 3,885,860
NCC+FF 75,143 31,250 579 578 388,621
NCC+LM 145,860 60,654 1,122 1,122 754,314
POC 40,060 34,585 2,177 1,088 312,695
NCC+BF+Homography 6,762,600 2,812,140 52,020 52,020 34,972,740
NCC+FF+Homography 676,263 281,218 5,203 5,202 3,497,309
NCC+LM+Homography 740,350 307,865 5,695 5,695 3,828,715
POC+Affine 360,060 310,553 19,585 9,792 2,809,207
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creases both for NCC- and POC-based methods. The com-
putational cost for POC+Affine is higher than that for POC,
since POC-based matching for nine candidate of the normal
vector is required to estimate the optimal normal vector. Al-
though the computational cost for NCC also increases by
geometric correction as well as POC, the computational cost
for POC+Affine is still lower than that for NCC-based meth-
ods with geometric correction.

5. Conclusion

We proposed an efficient method of window matching us-
ing POC with geometric correction of matching windows.
The proposed approach reduced the nonlinear deformation
of matching windows by using scaling and skewing. The
method makes it possible to achieve accurate 3D reconstruc-
tion even if stereo image pairs have large image transforma-
tion. The proposed method demonstrated more accurate 3D
reconstruction from multi-view images than conventional
window matching methods in a set of experiments. We plan
to develop a more efficient MVS algorithm in the future by
using the proposed method.
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