
ASIC Performance Comparison for
 the ISO Standard Block Ciphers

Takeshi Sugawara1, Naofumi Homma1, Takafumi Aoki1, and Akashi Satoh2

1 Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba-ku, Sendai-shi, Miyagi, 980-8579, Japan
2 National Institute of Advanced Industrial Science and Technology

1-18-13, Sotokanda, Chiyoda-ku, Tokyo, 101-0021, Japan
{sugawara, homma} @aoki.ecei.tohoku.ac.jp, aoki@ecei.tohoku.ac.jp,

akashi.satoh@aist.go.jp

Abstract. This paper presents performance comparisons of the ISO/IEC
18033 standard block ciphers, AES, Camellia, SEED, TDEA, MISTY1, and
CAST-128 in ASIC hardware. All the algorithms are implemented with a
loop architecture where one round function block is used iteratively, and S-
boxes are generated from lookup tables. In addition to the straightforward
implementations, compact data path architectures were designed for SEED
and MISTY1 using the characteristics of nested round functions. For the
compact AES and Camellia circuits, composite field S-boxes were also used
in addition to the lookup table S-box. All of the designs were synthesized by
using a 0.18-μm CMOS standard cell library, and the sizes and speeds were
evaluated. The highest throughput of 3.35 Gbps with 75.8 Kgates was
obtained by the 128-bit block cipher AES, and the 64-bit block cipher TDEA
showed the smallest gate counts of 4.6 Kgates with 228 Mbps.

Keywords: ISO/IEC 18033, Block Cipher, AES, Camellia, SEED, TDEA,
MISTY1, CAST-128, Cryptographic Hardware

1. Introduction

ISO/IEC 18033-3 [1] specifies three 128-bit block ciphers (AES [2], Camellia [3],
SEED [4]) and three 64-bit block ciphers (TDEA [5], MISTY1 [6], and CAST-128
[7]), and these algorithms have been widely implemented as software and hardware in
practical use. Performance comparisons of cryptographic algorithms in software
implementations were often made on the same processor [13]. There are some reports
on hardware comparisons for cipher algorithms using the same platform, but no
hardware comparisons for the ISO standard ciphers, as far as the authors know.

This paper presents performance comparisons for all of the ISO/IEC 18033-3
standard block ciphers by using an ASIC library. All of the algorithms were
implemented by using a loop architecture where one round function block is
repeatedly used, and lookup table logic is used for the S-boxes. In addition to the
straightforward implementations, we also designed some variations for compact

hardware. In the next section, datapath architectures are described in detail. Then the
designs were synthesized using a 0.18-μm CMOS standard cell library in Section 3,
and the speeds and sizes were evaluated to provide the basic characteristics of each
cipher in hardware implementations. The conclusions are described in Section 4.

2. Hardware architectures

2.1. 128-bit block ciphers

AES
AES (Advanced Encryption Standard) [2] is a Substitution-Permutation Network

(SPN) block cipher standardized by the NIST (National Institute of Standard and
Technologies), which supports three key lengths of 128, 192, and 256 bits. Fig. 1
shows our AES hardware architecture where the left part indicates a 128-bit data
randomization block and the right part is a key scheduler for a 128-bit key. SPN
ciphers require different data paths for encryption and decryption, but we shared 128-
bit selectors, registers, and XORs between the paths. The encryption datapath consists
of four function blocks: ShiftRows (byte-oriented rotations), SubBytes (sixteen 8-bit
s-boxes), MixColumns (four 32-bit matrix multiplications), and AddRoundKey (128-

Fig. 1. AES hardware architecture.

bit XOR). The decryption datapath consists of four inverse function blocks:
InvShiftRows, InvSubBytes, InvMixColumns, and AddRoundKey (shared with the
encryption data path). Our architecture uses a pair of sixteen S-boxes for the data
randomization, and four of them for the key scheduling. Our architecture takes 10
clock cycles for one 128-bit data block, and thus its throughput is calculated as 128
bits / 10 clocks × operating frequency.

The AES S-box is a combination of a multiplicative inverse on a Galois field
GF(28) and an affine transformation. It is often implemented as the lookup table logic
shown in the specification [2], but that requires a large circuit block. In contrast, the
composite field GF(((22)2)2) S-box shown in Fig. 2 [9] can greatly reduce the
hardware resources required. Therefore, we designed both lookup table and composite
field S-boxes for the performance comparison.

Camellia
Camellia is a Feistel-type block cipher jointly developed by NTT (Nippon

Telegraph and Telephone Corp.) and Mitsubishi Electric [3]. As with AES, Camellia
supports 128-, 192-, and 256-bit keys. An advantage of the Feistel cipher is that the
same datapath can be used for encryption and decryption. Fig. 3 shows our Camellia
hardware where a 64-bit round function (consisting of eight 8-bit S-boxes and a lot of
XOR gates) and two 64-bit linear functions for FL and FL-1 are used for data
randomization. The round function block is also used for key initialization. In
encryption (or decryption), the round function is repeated 18 times, the FL/FL-1
functions and key whitening (128-bit XOR) are used twice each, and one clock cycle
is required for data I/O, and thus the total number of clocks is 23. The round keys can
be generated on the fly, but when the secret key is changed, the key initialization
process takes 6 clock cycles.

Fig. 2. Compact AES S-box using composite field GF(((22) 2) 2) arithmetic.

41 Σ−Σ

Fig. 3. Camellia hardware architecture.

Fig. 4. Camellia S-box using an inverter on the composite field GF((24)2).

 The S-box of Camellia is a combination of an affine transformation and
multiplicative inverse on a Galois field similar to AES. The Camellia specification
[10] shows a lookup table for the inversion, but the field structure is not clearly
described. Reference [9] proposed a compact Camellia S-box circuit using the
composite field GF((24)2) as shown in Fig. 4. We implemented two types of S-box,
look-up table and composite field versions.

SEED
SEED is a Feistel-type block cipher developed by KISA (Korea Information

Security Agency) [4], and it only supports a 128-bit key. SEED was designed to
optimize its performance on 32-bit processors, and thus 32-bit additions and
subtractions are used in data randomization and key scheduling. For the SEED round
function, a triplet of a 32-bit G function, a 32-bit XOR, and a 32-bit addition (or
subtraction) is executed three times. We designed the two SEED hardware
architectures shown in Figs. 5 and 6. Fig. 5 is a straightforward version that executes
the round function in one clock cycle, and Fig. 6 is a compact version where the
round function is divided into three subfunctions, and one subfunction block is used
repeatedly. The G function contains two kinds of 8-bit S-boxes, S1 and S2 defined as
lookup tables. In Fig. 5, the data randomization block uses three G function blocks,
and the key scheduler has two of them, and the round function is executed in one

Key

64 64

128

32

128

G

G

G

A B C D

G G

>>
<<

64 64

32 32
64

64

Initial Vectors

S2 S1 S2 S1

Permutation
(AND-XOR Logic)

32

32

8 8 8 8

8 8 8 8

G 32

Data

Output

128
128

Fig. 5. Straightforward SEED hardware architecture.

cycle. The total number of clock cycles for one encryption or decryption is 20. The
compact architecture in Fig. 6 has only two G function blocks, with one used three
times in the data randomization block and the other used twice in the key scheduler.
One encryption or decryption takes 52 clock cycles including an extra 4 cycles for
initialization and data I/O. Key scheduling is performed on-the-fly in both
architectures.

2.2. 64-bit block ciphers

TDEA
The TDEA (Triple Data Encryption Algorithm) repeats the Feistel cipher DES

(Data Encryption Standard) algorithm three times by using two 56-bit keys (2-key
TDEA) or three keys (3-key TDEA) [5]. We designed a TDEA hardware architecture
shown in Fig. 7 that supports the two key options. By using a 32-bit round function
block, the TDEA hardware performs the 16-round DES operation three times, and
thus 48 cycles are required for one encryption or decryption. According to the TDEA
specification [5], we implemented the 6-bit input and 4-bit output S-boxes using
lookup tables. Reference [10] provided Boolean expressions for the S-boxes with
fewer logic gates. However, the critical path of the logic is rather long, and the S-box

Fig. 6. Compact SEED hardware architecture.

circuit is rather small even using a lookup table logic. Therefore, we used the lookup
table logic that can support a higher operating frequency.

MSTY1
MISTY1 from Mitsubishi Electric [6] is a Feistel-type 64-bit block cipher with a

128-bit key. The data randomization block has a nested structure, and thus it can be
divided into several stages to meet performance requirements. Fig. 8 shows a
straightforward hardware architecture for MISTY1 where the 64-bit FL/FL-1 function
and the 32-bit FO function (consisting of three sets of 32-bit FI function and 32-bit
XORs) can be performed in the same clock cycle. Fig. 9 is a compact version where
the FO function is executed in three clock cycles by repeatedly using one FI function
block. The FI function uses 7-bit and 9-bit S-boxes defined as lookup tables. The
number of rounds is recommended as eight in the specification [6], and thus we
evaluated the throughputs of MISTY1 circuits based on this number, though any
multiple of four can be used as the number of rounds. The straightforward
architecture in Fig. 8 takes one additional cycle for data I/O, and thus the total cycle
count for one encryption or decryption is 9. The compact architecture in Fig. 9
executes each third of the FO sub-function and the FL/FL-1 function in different
cycles. The FO sub-function block is repeatedly used 3×8 = 24 times, the FL/FL-1
function block is used 5 times, and one additional I/O cycles is required, requiring 30
cycles in total.

Output

IP

EP

P

PC-1 PC-1 PC-1

<< >>

PC-2

Data

Key1 Key2 Key3
64

64 64 64

64

56 56 56

32 48

64

48

3232

S1 S2 S3 S4 S5 S6 S7 S8

IP-1

6 6 6 6 6 6 6 6

4 4 4 4 4 4 4 4

64

Fig. 7. TDEA hardware architecture.

When the 128-bit secret key is changed, the key scheduler generates a 128-bit
subkey in 10 clock cycles, but once the sub-key is generated, the round keys KO, KI,
and KL can be generated on-the-fly.

Fig. 8. Straightforward MYSTY1 Fig. 9. Compact MYSTY1
hardware architecture. hardware architecture.

CAST-128
CAST-128 as developed by Carlisle Adams [7] is a Feistel cipher, where the key

length is variable in the range of 40~128 bits in 8-bit steps. The number of rounds is
12 or 16 for 40~80-bits and 88~128-bit keys, respectively. The CSE
(Communications Security Establishment) approved CAST-128 for use by the
Government of Canada. The popular e-mail ciphering tool PGP (Pretty Good Privacy)
uses CAST-128 as the default algorithm. Eight different types of 8-bit input and 32-
bit output S-boxes defined as lookup tables are used many times for data
randomization and key scheduling. It also uses three different types of 32-bit F
functions. The algorithm can be implemented efficiently on 32-bit processors, but the

Key

8 8 8

32 32

Data
64

X Z

8 8 8

S1-S4

ASX

ASX

ASX

ASX

Output

<<<

S5-S80

Switching Box

128

32 32

64

32

32323232
128

128 128

128 128

32

128

32 32 32 32

Register
array

Register
array

5 5

32 32

64

1-bit ASX cell

B0

S0

Sel1
Sel2

P0G0 P1G1C1

A0
B1 A1

S1

A31
B31

P31G31C31

1-bit
ASX cell

1-bit
ASX cell

S31

Carry Look-Ahead UnitASX

Sel0 Sel1 mode
0 0
1 0

10

XOR
Add
Sub

Fig. 10. CAST-128 hardware architecture.

large S-boxes and the use of three different round functions are problematic in the
development of compact hardware. In order to achieve compact CAST-128 hardware,
we used a minimum set of S-boxes and merged the three round functions by using a
unified arithmetic unit called ASX (Add-Sub-XOR), which switches among three
arithmetic operations (32-bit addition, subtraction, and XOR) [11] as shown in Fig. 10.
A carry-look-ahead scheme was used for the ASX block considering the balance
between speed and gate count. Each encryption or decryption requires 16 round
functions and 1 data I/O, and thus takes 17 cycles in total.

3. Performance evaluation

Table 1 shows the hardware performance comparisons of the proposed
architectures for six cipher algorithms. The designs were synthesized with the
Synopsys Design Complier (Version 2005.09) with two optimizations, size and speed.
The speeds and sizes were evaluated by using a 0.18-μm CMOS standard cell library
[12] under the worst case conditions. The lookup table and the composite field S-
boxes were used for AES and Camellia, and the straightforward and the compact
round functions were applied to SEED and MISTY1. "Hardware efficiency" in the

Table 1. Performance comparison in ASIC

Area 128.7 1,647.4 31.2 52.7
172.4 2,206.9 36.6 60.3
261.8 3,350.8 75.8 44.2

Area 102.0 1,306.1 18.3 71.4
Speed 128.0 1,638.9 28.7 57.1
Area 113.6 632.4 11.9 53.1

Speed 188.3 1,048.1 21.5 48.7
Area 101.9 567.3 9.1 62.0

Speed 146.6 816.0 16.5 49.5
Area 67.5 540.2 23.5 23.0

Speed 84.6 676.8 36.2 18.7
Area 92.4 227.5 11.5 19.8

Speed 170.1 418.6 18.9 22.2
Area 170.9 227.9 4.6 49.4

Speed 311.5 415.4 7.0 59.7
Area 40.2 286.0 14.1 20.3

Speed 96.9 689.1 29.4 23.4
Area 92.6 197.5 9.3 21.3

Speed 171.5 365.9 17.6 20.8
Area 50.5 189.9 26.4 7.2

Speed 77.6 292.1 32.8 8.9

Speed

Algorithm S-box

128 128

Mode

Enc.AES
Table

Table

Table

GF((24)2)

Block
Length
(bits)

GF(((22)2)2)

10

23

17

16

9

Area
(Kgates)

Efficiency
(Kbps/
gates)

Opti-
mize

Freq.
(MHz)

Thr'put
(Mbps)

Key
Length
(bits)

Cycle

SEED

128

64 56, 112,
168TDEA

Enc./
Dec.Camellia 128

Table

Enc./
Dec.

128 128Enc./
Dec.

64 128
30 Table

Table

CAST-128 64 128

Enc./
Dec.

Enc./
Dec.MISTY1

52 Table

48 Table

last column means throughput per gate, and thus implementations with higher
throughput and smaller gate counts show higher values. Fig. 11 plots throughput
versus gate count of each implementation. The horizontal axis is gate count, and the
vertical axis is the throughput, so dots farther to the left and moving up show higher
hardware efficiency.

The AES hardware with lookup table S-boxes achieved the highest-throughput of
3.35 Gbps with 75.8 Kgates because SPN ciphers generally require fewer iteration
rounds in comparison with Feistel ciphers. The throughput is more than three times
higher than that of any other ciphers, but it does not fit in the Fig. 11. Therefore, we
also synthesized a middle-speed version with the lookup table S-boxes. The
composite field S-box version also showed the highest hardware efficiency of 71.4
Kbps/gate, which is at least 15 % higher than the other ciphers. The Camellia
hardware with the composite field S-box had the smallest gate count of 9.1 Kgates
among the three 128-bit block ciphers. This is because the Feistel network uses a 64-
bit round function that is half the size of AES and the basic components in the
function are similar to AES. However, as a natural result its throughputs are less than
half compared to AES. However, Camellia obtained the maximum throughput of 1.05
Gbps with 21.5 Kgates, and only Camellia and AES showed throughputs higher than
1 Gbps.

The SEED hardware shows a wide variety of performance from 166.2 Mbps with
10.6 Kgates to 676.8 Mbps with 36.2 Kgates depending on the architectures of the
round function block. The area for the compact architecture is comparable to Camellia

0

500

1000

1500

2000

2500

0 10 20 30 40

AES
Camellia
SEED
TDEA
MISTY1
CAST-128

Area [Kgates]

Th
ro

ug
hp

ut
 [M

bp
s]

Fig. 11. Throughput versus Area of each implementation

hardware, but the throughput is much lower due to the large number of clock cycles
(52), since 3 clocks are required for each round. The straightforward version performs
one round in one clock, but then the round function block has the long critical path,
and thus the operating frequencies stay low.

The TDEA hardware had extremely small gate counts of 4.6~7 Kgates and high
operating frequencies of 170.9~311.5 MHz since the S-boxes are very small and the
permutation function P is implemented simply with wire twisting that needs no
transistors. However, the typical throughputs of 227.9~415.4 Mbps are on average
among the 64-bit ciphers because the large number of iteration rounds (48). Note that
TDEA achieved very high hardware efficiencies of 49.4~59.7 Kbps/gate, comparable
to the 128-bit cipher Camellia, and higher than SEED.

The MISTY1 hardware had the highest throughput of 689.1 Mbps among the 64-
bit block ciphers. Not only for speed, but the compact version also showed a small
gate count of 9.3 Kgates. These results were made possible by the flexibility of the
MISTY1 algorithm with the nested network structure, and many architectures can be
designed, while the DES algorithm is simple but has almost no flexibility.

The CAST-128 had large gate counts of 26.4 ~ 32.8 Kgates, which is 6~7 times
larger than TDEA, and also larger than the 128-bit ciphers in many cases, even
though it uses a Feistel network that should be suitable for a compact implementation.
The reason is obviously because the total size of the CAST-128 S-boxes is 8 Kbytes
while DES needs only 256 bytes. The low frequencies of 50.5~77.6 MHz are caused
by the four 32-bit arithmetic operations in the ASX blocks in Fig. 9, in addition to the
signal delay in the large S-boxes, even though these components cause no problems in
software implementations on 32-bit microprocessors. In contrast, other ciphers use
small S-boxes and/or binary field arithmetic where no carry propagation occurs.

From these implementation results, we can basically say that AES and TDEA are
the best algorithms for ASIC hardware implementations among the 128-bit and 64-bit
block ciphers, respectively.

Lastly, we briefly take a look at software performance. Table 2 shows the speeds of
the cryptographic software on a Pentium 4 2.1 GHz processor [13]. AES also shows
the best performance in software. It is interesting to note that CAST-128 software
achieved a throughput of 342.0 Mbps, which is faster than the 292.1 Mbps in our
hardware. In addition to the speed advantage of the Pentium processor fabricated by
using advanced LSI processing technology, the CAST-128 algorithm was optimized

Table 2. Software performance on Pentium 4 processor [13]

Algorithm Throughput (Mbps)
AES 488.08

Camellia 152.64
SEED -
TDEA 78.80

MISTY1 -
CAST-128 342.00

for 32-bit MPU platforms where a fast customized 32-bit arithmetic unit and a large
cache memory are available. In contrast, the TDEA software shows low throughput of
78.8 Mbps where the hardware achieved 415.4 Mbps. This is mainly because of the
tedious bit manipulations in the permutation functions such as the P function, which
requires a very heavy workload for a microprocessor while it needs no gate logic in
hardware. Consequently, we have to be aware that the best performance for a cipher
algorithm depends highly on the platform to be used.

4. Conclusion

This paper compared the hardware performances for all of the ISO/IEC 18033-3
standard block ciphers by using a 0.18-μm CMOS standard cell library. Each
algorithm was implemented as a simple loop architecture with lookup table S-boxes.
The round functions of SEED and MISTY1 have nested network structures, and thus
we also designed compact versions for them by dividing each round function into sub-
function blocks, and repeatedly using one block. For AES and Camellia, we use
composite field S-boxes in addition to the lookup table versions.

AES is only the SPN cipher while the others have Feistel networks, and thus we
implemented two data paths for the AES data randomization block. Even with this in
mind, the highest throughput of 3.35 Gbps and the highest hardware efficiencies of
71.4 kbps/gate clearly show the high advantages of AES in ASIC implementations
over all of the other ciphers. The Camellia hardware achieved the smallest gate counts
of 9.1 Kgates among the 128-bit ciphers as a consequence of the 64-bit round function
of the Feistel cipher, but the larger number of rounds limited the throughput to 1.01
Gbps.

Among the 64-bit block ciphers, the simple structure of TDEA resulted in an
extremely small size of 4.7 Kgates with area optimization, and a very high operating
frequency of 311.5 MHz and high hardware efficiency of 59.7 Kbps/gate with speed
optimization, but the throughput of 415.4 Mbps is not so high, because the TDEA
hardware needs 48 cycles for one encryption or decryption while AES and Camellia
require only 10 and 23 cycles, respectively. Still, TDEA is the best algorithm among
the three 64-bit ciphers from the hardware performance viewpoint.

In this paper, each cipher algorithm was designed in a straightforward way using
simple loop architecture, and no special optimizations for each algorithm were done,
except for the AES and Camellia S-box. Therefore, algorithm-specific hardware
architectures would achieve better performances. However, we believe that our
results based on the circuits using the loop architecture and synthesized with the same
ASIC library fairly represent the basic characteristics of each cipher. We are now
designing algorithm-specific hardware for each cipher, and will report the results in
the near future.

References

1. ISO/IEC 18033-3 “Information technology -- Security techniques -- Encryption algorithms --
Part 3: Block ciphers,” Jul. 2005,
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=37972

2. NIST, “Advanced Encryption Standard (AES),” FIPS PUB 197, Nov. 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

3. K. Aoki, et al., “Specification of Camellia – a 128-bit Block Cipher Version 2.0,”
http://info.isl.ntt.co.jp/camellia/dl/01espec.pdf

4. KISA, “SEED Algorithm Specification,”
http://www.cyberprivacy.or.kr/kisa/seed/data/Document_pdf/
SEED_Specification_english.pdf

5. NIST, “Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher,”
SP 800-67, May 2004.
http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf

6. M. Matsui, “Specification of MISTY1 – a 64-bit Block Cipher,” NESSIE Project,
https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions.html

7. C. Adams, “The CAST-128 Encryption Algorithm,” RFC 2114, May 1997,
http://www.ietf.org/rfc/rfc2144.txt

8. A. Satoh, et al., “A Compact Rijndael Hardware Architecture with S-box Optimization,”
Advances in Cryptology – ASIACRYPT 2001, LNCS 2248, pp. 239-254, Dec. 2001.

9. A. Satoh, et al., “Hardware-Focused Performance Comparison for the Standard Block
Ciphers AES, Camellia, and Triple-DES,” Information Security Conference - ISC 2003,
LNCS 2851, pp. 252-266, Oct. 2003.

10. M. Kwan, “Bitslice DES,” http:/www.darkside.com.au/bitslice/
11. T. Sugawara, et al., “A High-Performance ASIC Implementation of the 64-bit Block Cipher

CAST-128,” 2007 IEEE International Symposium on Circuits and Systems - ISCAS 2007,
May 2007.

12. M. Hashimoto, et al. “Standard cell libraries with various driving strength cells for 0.13,
0.18, and 0.35 um technologies, Proc. of Asia and South Pacific Design Automation
Conference 2003, pp. 589-590, Jan. 2003.

13. W. Dai, “Crypto++ 5.2.1 Benchmarks.” http://www.cryptopp.com/benchmarks.html

