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Abstract. This paper presents performance comparisons of the ISO/IEC 
18033 standard block ciphers, AES, Camellia, SEED, TDEA, MISTY1, and 
CAST-128 in ASIC hardware. All the algorithms are implemented with a 
loop architecture where one round function block is used iteratively, and S-
boxes are generated from lookup tables. In addition to the straightforward 
implementations, compact data path architectures were designed for SEED 
and MISTY1 using the characteristics of nested round functions. For the 
compact AES and Camellia circuits, composite field S-boxes were also used 
in addition to the lookup table S-box. All of the designs were synthesized by 
using a 0.18-μm CMOS standard cell library, and the sizes and speeds were 
evaluated. The highest throughput of 3.35 Gbps with 75.8 Kgates was 
obtained by the 128-bit block cipher AES, and the 64-bit block cipher TDEA 
showed the smallest gate counts of 4.6 Kgates with 228 Mbps. 

Keywords: ISO/IEC 18033, Block Cipher, AES, Camellia, SEED, TDEA, 
MISTY1, CAST-128, Cryptographic Hardware 

1. Introduction 

ISO/IEC 18033-3 [1] specifies three 128-bit block ciphers (AES [2], Camellia [3], 
SEED [4]) and three 64-bit block ciphers (TDEA [5], MISTY1 [6], and CAST-128 
[7]), and these algorithms have been widely implemented as software and hardware in 
practical use. Performance comparisons of cryptographic algorithms in software 
implementations were often made on the same processor [13]. There are some reports 
on hardware comparisons for cipher algorithms using the same platform, but no 
hardware comparisons for the ISO standard ciphers, as far as the authors know. 

This paper presents performance comparisons for all of the ISO/IEC 18033-3 
standard block ciphers by using an ASIC library. All of the algorithms were 
implemented by using a loop architecture where one round function block is 
repeatedly used, and lookup table logic is used for the S-boxes. In addition to the 
straightforward implementations, we also designed some variations for compact 



hardware. In the next section, datapath architectures are described in detail. Then the 
designs were synthesized using a 0.18-μm CMOS standard cell library in Section 3, 
and the speeds and sizes were evaluated to provide the basic characteristics of each 
cipher in hardware implementations. The conclusions are described in Section 4. 
 
2. Hardware architectures 

2.1. 128-bit block ciphers 

AES 
AES (Advanced Encryption Standard) [2] is a Substitution-Permutation Network 

(SPN) block cipher standardized by the NIST (National Institute of Standard and 
Technologies), which supports three key lengths of 128, 192, and 256 bits. Fig. 1 
shows our AES hardware architecture where the left part indicates a 128-bit data 
randomization block and the right part is a key scheduler for a 128-bit key. SPN 
ciphers require different data paths for encryption and decryption, but we shared 128-
bit selectors, registers, and XORs between the paths. The encryption datapath consists 
of four function blocks: ShiftRows (byte-oriented rotations), SubBytes (sixteen 8-bit 
s-boxes), MixColumns (four 32-bit matrix multiplications), and AddRoundKey (128-

 

 
 

Fig. 1. AES hardware architecture. 



bit XOR). The decryption datapath consists of four inverse function blocks: 
InvShiftRows, InvSubBytes, InvMixColumns, and AddRoundKey (shared with the 
encryption data path). Our architecture uses a pair of sixteen S-boxes for the data 
randomization, and four of them for the key scheduling. Our architecture takes 10 
clock cycles for one 128-bit data block, and thus its throughput is calculated as 128 
bits / 10 clocks × operating frequency. 

The AES S-box is a combination of a multiplicative inverse on a Galois field 
GF(28) and an affine transformation. It is often implemented as the lookup table logic 
shown in the specification [2], but that requires a large circuit block. In contrast, the 
composite field GF(((22)2)2) S-box shown in Fig. 2 [9] can greatly reduce the 
hardware resources required. Therefore, we designed both lookup table and composite 
field S-boxes for the performance comparison. 

Camellia 
Camellia is a Feistel-type block cipher jointly developed by NTT (Nippon 

Telegraph and Telephone Corp.) and Mitsubishi Electric [3]. As with AES, Camellia 
supports 128-, 192-, and 256-bit keys. An advantage of the Feistel cipher is that the 
same datapath can be used for encryption and decryption. Fig. 3 shows our Camellia 
hardware where a 64-bit round function (consisting of eight 8-bit S-boxes and a lot of 
XOR gates) and two 64-bit linear functions for FL and FL-1 are used for data 
randomization. The round function block is also used for key initialization. In 
encryption (or decryption), the round function is repeated 18 times, the FL/FL-1 
functions and key whitening (128-bit XOR) are used twice each, and one clock cycle 
is required for data I/O, and thus the total number of clocks is 23. The round keys can 
be generated on the fly, but when the secret key is changed, the key initialization 
process takes 6 clock cycles. 

 
Fig. 2. Compact AES S-box using composite field GF(((22) 2) 2) arithmetic. 
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Fig. 3. Camellia hardware architecture. 

 

 
Fig. 4. Camellia S-box using an inverter on the composite field GF((24)2). 



 The S-box of Camellia is a combination of an affine transformation and 
multiplicative inverse on a Galois field similar to AES. The Camellia specification 
[10] shows a lookup table for the inversion, but the field structure is not clearly 
described. Reference [9] proposed a compact Camellia S-box circuit using the 
composite field GF((24)2) as shown in Fig. 4. We implemented two types of S-box, 
look-up table and composite field versions. 

SEED 
SEED is a Feistel-type block cipher developed by KISA (Korea Information 

Security Agency) [4], and it only supports a 128-bit key. SEED was designed to 
optimize its performance on 32-bit processors, and thus 32-bit additions and 
subtractions are used in data randomization and key scheduling. For the SEED round 
function, a triplet of a 32-bit G function, a 32-bit XOR, and a 32-bit addition (or 
subtraction) is executed three times. We designed the two SEED hardware 
architectures shown in Figs. 5 and 6. Fig. 5 is a straightforward version that executes 
the round function in one clock cycle, and Fig. 6 is a compact version where the 
round function is divided into three subfunctions, and one subfunction block is used 
repeatedly. The G function contains two kinds of 8-bit S-boxes, S1 and S2 defined as 
lookup tables. In Fig. 5, the data randomization block uses three G function blocks, 
and the key scheduler has two of them, and the round function is executed in one 
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Fig. 5. Straightforward SEED hardware architecture. 



cycle. The total number of clock cycles for one encryption or decryption is 20. The 
compact architecture in Fig. 6 has only two G function blocks, with one used three 
times in the data randomization block and the other used twice in the key scheduler. 
One encryption or decryption takes 52 clock cycles including an extra 4 cycles for 
initialization and data I/O. Key scheduling is performed on-the-fly in both 
architectures. 

2.2. 64-bit block ciphers 

TDEA 
The TDEA (Triple Data Encryption Algorithm) repeats the Feistel cipher DES 

(Data Encryption Standard) algorithm three times by using two 56-bit keys (2-key 
TDEA) or three keys (3-key TDEA) [5]. We designed a TDEA hardware architecture 
shown in Fig. 7 that supports the two key options. By using a 32-bit round function 
block, the TDEA hardware performs the 16-round DES operation three times, and 
thus 48 cycles are required for one encryption or decryption. According to the TDEA 
specification [5], we implemented the 6-bit input and 4-bit output S-boxes using 
lookup tables. Reference [10] provided Boolean expressions for the S-boxes with 
fewer logic gates. However, the critical path of the logic is rather long, and the S-box 

 

Fig. 6. Compact SEED hardware architecture. 



circuit is rather small even using a lookup table logic. Therefore, we used the lookup 
table logic that can support a higher operating frequency. 

MSTY1 
MISTY1 from Mitsubishi Electric [6] is a Feistel-type 64-bit block cipher with a 

128-bit key. The data randomization block has a nested structure, and thus it can be 
divided into several stages to meet performance requirements. Fig. 8 shows a 
straightforward hardware architecture for MISTY1 where the 64-bit FL/FL-1 function 
and the 32-bit FO function (consisting of three sets of 32-bit FI function and 32-bit 
XORs) can be performed in the same clock cycle. Fig. 9 is a compact version where 
the FO function is executed in three clock cycles by repeatedly using one FI function 
block. The FI function uses 7-bit and 9-bit S-boxes defined as lookup tables. The 
number of rounds is recommended as eight in the specification [6], and thus we 
evaluated the throughputs of MISTY1 circuits based on this number, though any 
multiple of four can be used as the number of rounds. The straightforward 
architecture in Fig. 8 takes one additional cycle for data I/O, and thus the total cycle 
count for one encryption or decryption is 9. The compact architecture in Fig. 9 
executes each third of the FO sub-function and the FL/FL-1 function in different 
cycles. The FO sub-function block is repeatedly used 3×8 = 24 times, the FL/FL-1 
function block is used 5 times, and one additional I/O cycles is required, requiring 30 
cycles in total. 
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Fig. 7. TDEA hardware architecture. 



When the 128-bit secret key is changed, the key scheduler generates a 128-bit 
subkey in 10 clock cycles, but once the sub-key is generated, the round keys KO, KI, 
and KL can be generated on-the-fly. 
 
 

 
 

Fig. 8. Straightforward MYSTY1          Fig. 9. Compact MYSTY1 
hardware architecture.                   hardware architecture. 



CAST-128 
CAST-128 as developed by Carlisle Adams [7] is a Feistel cipher, where the key 

length is variable in the range of 40~128 bits in 8-bit steps. The number of rounds is 
12 or 16 for 40~80-bits and 88~128-bit keys, respectively. The CSE 
(Communications Security Establishment) approved CAST-128 for use by the 
Government of Canada. The popular e-mail ciphering tool PGP (Pretty Good Privacy) 
uses CAST-128 as the default algorithm. Eight different types of 8-bit input and 32-
bit output S-boxes defined as lookup tables are used many times for data 
randomization and key scheduling. It also uses three different types of 32-bit F 
functions. The algorithm can be implemented efficiently on 32-bit processors, but the 
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Fig. 10. CAST-128 hardware architecture. 



large S-boxes and the use of three different round functions are problematic in the 
development of compact hardware. In order to achieve compact CAST-128 hardware, 
we used a minimum set of S-boxes and merged the three round functions by using a 
unified arithmetic unit called ASX (Add-Sub-XOR), which switches among three 
arithmetic operations (32-bit addition, subtraction, and XOR) [11] as shown in Fig. 10. 
A carry-look-ahead scheme was used for the ASX block considering the balance 
between speed and gate count. Each encryption or decryption requires 16 round 
functions and 1 data I/O, and thus takes 17 cycles in total. 

3. Performance evaluation 

Table 1 shows the hardware performance comparisons of the proposed 
architectures for six cipher algorithms. The designs were synthesized with the 
Synopsys Design Complier (Version 2005.09) with two optimizations, size and speed. 
The speeds and sizes were evaluated by using a 0.18-μm CMOS standard cell library 
[12] under the worst case conditions. The lookup table and the composite field S-
boxes were used for AES and Camellia, and the straightforward and the compact 
round functions were applied to SEED and MISTY1. "Hardware efficiency" in the 

Table 1. Performance comparison in ASIC 

Area 128.7 1,647.4 31.2 52.7
172.4 2,206.9 36.6 60.3
261.8 3,350.8 75.8 44.2

Area 102.0 1,306.1 18.3 71.4
Speed 128.0 1,638.9 28.7 57.1
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last column means throughput per gate, and thus implementations with higher 
throughput and smaller gate counts show higher values. Fig. 11 plots throughput 
versus gate count of each implementation. The horizontal axis is gate count, and the 
vertical axis is the throughput, so dots farther to the left and moving up show higher 
hardware efficiency. 

The AES hardware with lookup table S-boxes achieved the highest-throughput of 
3.35 Gbps with 75.8 Kgates because SPN ciphers generally require fewer iteration 
rounds in comparison with Feistel ciphers. The throughput is more than three times 
higher than that of any other ciphers, but it does not fit in the Fig. 11. Therefore, we 
also synthesized a middle-speed version with the lookup table S-boxes. The 
composite field S-box version also showed the highest hardware efficiency of 71.4 
Kbps/gate, which is at least 15 % higher than the other ciphers. The Camellia 
hardware with the composite field S-box had the smallest gate count of 9.1 Kgates 
among the three 128-bit block ciphers. This is because the Feistel network uses a 64-
bit round function that is half the size of AES and the basic components in the 
function are similar to AES. However, as a natural result its throughputs are less than 
half compared to AES. However, Camellia obtained the maximum throughput of 1.05 
Gbps with 21.5 Kgates, and only Camellia and AES showed throughputs higher than 
1 Gbps. 

The SEED hardware shows a wide variety of performance from 166.2 Mbps with 
10.6 Kgates to 676.8 Mbps with 36.2 Kgates depending on the architectures of the 
round function block. The area for the compact architecture is comparable to Camellia 
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Fig. 11. Throughput versus Area of each implementation 

 



hardware, but the throughput is much lower due to the large number of clock cycles 
(52), since 3 clocks are required for each round. The straightforward version performs 
one round in one clock, but then the round function block has the long critical path, 
and thus the operating frequencies stay low.  

The TDEA hardware had extremely small gate counts of 4.6~7 Kgates and high 
operating frequencies of 170.9~311.5 MHz since the S-boxes are very small and the 
permutation function P is implemented simply with wire twisting that needs no 
transistors. However, the typical throughputs of 227.9~415.4 Mbps are on average 
among the 64-bit ciphers because the large number of iteration rounds (48). Note that 
TDEA achieved very high hardware efficiencies of 49.4~59.7 Kbps/gate, comparable 
to the 128-bit cipher Camellia, and higher than SEED. 

The MISTY1 hardware had the highest throughput of 689.1 Mbps among the 64-
bit block ciphers. Not only for speed, but the compact version also showed a small 
gate count of 9.3 Kgates. These results were made possible by the flexibility of the 
MISTY1 algorithm with the nested network structure, and many architectures can be 
designed, while the DES algorithm is simple but has almost no flexibility.  

The CAST-128 had large gate counts of 26.4 ~ 32.8 Kgates, which is 6~7 times 
larger than TDEA, and also larger than the 128-bit ciphers in many cases, even 
though it uses a Feistel network that should be suitable for a compact implementation. 
The reason is obviously because the total size of the CAST-128 S-boxes is 8 Kbytes 
while DES needs only 256 bytes. The low frequencies of 50.5~77.6 MHz are caused 
by the four 32-bit arithmetic operations in the ASX blocks in Fig. 9, in addition to the 
signal delay in the large S-boxes, even though these components cause no problems in 
software implementations on 32-bit microprocessors. In contrast, other ciphers use 
small S-boxes and/or binary field arithmetic where no carry propagation occurs. 

From these implementation results, we can basically say that AES and TDEA are 
the best algorithms for ASIC hardware implementations among the 128-bit and 64-bit 
block ciphers, respectively. 

Lastly, we briefly take a look at software performance. Table 2 shows the speeds of 
the cryptographic software on a Pentium 4 2.1 GHz processor [13]. AES also shows 
the best performance in software. It is interesting to note that CAST-128 software 
achieved a throughput of 342.0 Mbps, which is faster than the 292.1 Mbps in our 
hardware. In addition to the speed advantage of the Pentium processor fabricated by 
using advanced LSI processing technology, the CAST-128 algorithm was optimized 

Table 2. Software performance on Pentium 4 processor [13] 

Algorithm Throughput (Mbps)
AES 488.08 

Camellia 152.64 
SEED - 
TDEA 78.80 

MISTY1 - 
CAST-128 342.00 

 



for 32-bit MPU platforms where a fast customized 32-bit arithmetic unit and a large 
cache memory are available. In contrast, the TDEA software shows low throughput of 
78.8 Mbps where the hardware achieved 415.4 Mbps. This is mainly because of the 
tedious bit manipulations in the permutation functions such as the P function, which 
requires a very heavy workload for a microprocessor while it needs no gate logic in 
hardware. Consequently, we have to be aware that the best performance for a cipher 
algorithm depends highly on the platform to be used. 

4. Conclusion 

This paper compared the hardware performances for all of the ISO/IEC 18033-3 
standard block ciphers by using a 0.18-μm CMOS standard cell library. Each 
algorithm was implemented as a simple loop architecture with lookup table S-boxes. 
The round functions of SEED and MISTY1 have nested network structures, and thus 
we also designed compact versions for them by dividing each round function into sub-
function blocks, and repeatedly using one block. For AES and Camellia, we use 
composite field S-boxes in addition to the lookup table versions. 

AES is only the SPN cipher while the others have Feistel networks, and thus we 
implemented two data paths for the AES data randomization block. Even with this in 
mind, the highest throughput of 3.35 Gbps and the highest hardware efficiencies of 
71.4 kbps/gate clearly show the high advantages of AES in ASIC implementations 
over all of the other ciphers. The Camellia hardware achieved the smallest gate counts 
of 9.1 Kgates among the 128-bit ciphers as a consequence of the 64-bit round function 
of the Feistel cipher, but the larger number of rounds limited the throughput to 1.01 
Gbps. 

Among the 64-bit block ciphers, the simple structure of TDEA resulted in an 
extremely small size of 4.7 Kgates with area optimization, and a very high operating 
frequency of 311.5 MHz and high hardware efficiency of 59.7 Kbps/gate with speed 
optimization, but the throughput of 415.4 Mbps is not so high, because the TDEA 
hardware needs 48 cycles for one encryption or decryption while AES and Camellia 
require only 10 and 23 cycles, respectively. Still, TDEA is the best algorithm among 
the three 64-bit ciphers from the hardware performance viewpoint. 

In this paper, each cipher algorithm was designed in a straightforward way using 
simple loop architecture, and no special optimizations for each algorithm were done, 
except for the AES and Camellia S-box. Therefore, algorithm-specific hardware 
architectures would achieve better performances. However, we believe that our 
results based on the circuits using the loop architecture and synthesized with the same 
ASIC library fairly represent the basic characteristics of each cipher. We are now 
designing algorithm-specific hardware for each cipher, and will report the results in 
the near future. 
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