
SPA against an FPGA-Based RSA Implementation
with a High-Radix Montgomery Multiplier

Atsushi Miyamoto∗, Naofumi Homma∗, Takafumi Aoki∗ and Akashi Satoh†
∗ Graduate School of Information Sciences, Tohoku University

6-6-05, Aramaki Aza Aoba, Aoba-ku, Sendai-shi 980-8579, Japan
Phone: +81-22-795-7169, Fax: +81-22-263-9308,

E-mail: miyamoto@aoki.ecei.tohoku.ac.jp
† IBM Research, Tokyo Research Laboratory, IBM Japan, Ltd.

1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa, 242-8502, Japan

Abstract— Simple Power Analysis (SPA) was applied to an RSA
processor with a high-radix Montgomery multiplier on an FPGA
platform, and the different characteristics of power waveforms
caused by two types of multiplier (built-in and custom) were
investigated in detail. We also applied an active attack where
input data was set to a specific pattern to control the modular
multiplication. The power dissipation for the multiplication was
greatly reduced in comparison with modular squaring, resulting
in success in revealing all of the secret key bits.

I. INTRODUCTION

Physical attacks on cryptographic modules using side-
channel information are attracting extensive attention. In order
to reveal secret parameters, the power dissipation, electromag-
netic radiation, or operating times as correlated to internal
operations are measured. Simple Power Analysis (SPA) and
Differential Power Analysis (DPA) [1], [2] are known as
basic and powerful side-channel attacks, and many papers
have been published. However, there are not many reports
about vulnerabilities of cryptographic hardware against such
attacks based on experimental results using actual implemen-
tations. Therefore, we used an FPGA platform to develop
a cryptographic processor for the de facto standard public
key cipher RSA and evaluated its vulnerability against SPA.
The processor uses a high-radix Montgomery multiplication
algorithm [3], [4] without division to accelerate the modular
multiplication and squaring. The SPA attack on RSA is to
detect the sequence of multiplication and squaring operations
repeatedly performed using to a secret key (an exponent).
Therefore, the structure of the multiplier has strong influence
on the accuracy of SPA. For this work, we implemented
two types of RSA processors using an embedded multiplier
block in an FPGA and a custom made multiplier, and the
characteristics of the multipliers for SPA are compared.

II. RSA PROCESSOR

A. Modular exponentiation algorithm

The RSA cryptosystem employs modular exponentiation for
encryption and decryption as follow:

C = P E
mod N, (1)

P = CD
mod N, (2)

ALGORITHM 1
MODULAR EXPONENTIATION (MSB First)

Input: X , N ,
E = (ek−1, ..., e1, e0)2

Output: Z = XE mod N

1 : Z := 1;
2 : for i = k − 1 downto 0
3 : Z := Z * Z mod N ; – squaring
4 : if (ei = 1) then
5 : Z := Z * X mod N ; – multiplication
6 : end if
7 : end for

where P is the plaintext, C is the ciphertext, E and N are the
public keys, and D is the secret key. P , C, N and D are at
least 1,024 bits in length for security reasons.

Binary methods are commonly used for the modular ex-
ponentiations, which perform multiplication and squaring se-
quentially according to the bit pattern of the exponent E

or D. ALGORITHM 1 (MSB First) shows a left-to-right
binary method for scanning the bits of the exponent from
MSB to LSB. This algorithm always performs a squaring at
Line 3 independently of the scanned bit value, but the multiply
operation at Line 5 is only executed if the scanned bit is 1.

ALGORITHM 2 (MontMult) shows the high-radix Mont-
gomery multiplication we implemented, and ALGORITHM
3 (ModExp) is the left-to-right binary method using the Mont-
gomery multiplication, where MontRedc and InvN indicate the
preprocesses to calculate X2k mod N and −N−1 mod 2k,
respectively.

B. Processor architecture

Fig. 1 shows a block diagram of our RSA processor where
the data bus width is r bits to fit the word size of the multiplier.
The Multiplication block repeats the multiply-additions in
response to the bit pattern output from the shift register
Key to perform ModExp. The r-bit Arithmetic core in the
Multiplication block performs a multiply-addition operation
(e.g., Q = z + xy + C) using operands stored in the registers
X, Y, C and Z. Our design uses single port memories, so
the multiply-addition takes two cycles to read the operands

Fig. 1. RSA processor architecture.

ALGORITHM 2
MONTGOMERY MULTIPLICATION (MontMult)

Input: X = (xm−1, ..., x1, x0)2r ,
Y = (ym−1 , ..., y1, y0)2r ,
N = (nm−1, ..., n1, n0)2r ,
W = −N−1 mod 2r

Output: Z = XY 2−r·m mod N
1 : Z := 0; V := 0;
2 : for i = 0 to m − 1
3 : C := 0;
4 : ti := (z0 + xiy0) mod 2r ;
5 : ti := tiW mod 2r ;
6 : for j = 0 to m − 1
7 : Q := zj + xiyj + C;
8 : zj := Q mod 2r ; C := Q/2r ;
9 : end for
10: zm := C;
11: C := 0;
12: for j = 0 to m − 1
13: Q := zj + njti + C;
14: if (j 6= 0) then zj−1 := Q mod 2r ;
15: C := Q/2r ;
16: end for
17: Q := zm + V + C;
18: zm−1 := Q mod 2r ; V := Q/2r ;
19: end for
20: C := 1;
21: for j = 0 to m − 1
22: Q := zj+!nj + C;
23: zj := Q mod 2r ; C := Q/2r;
24: end for
25: if (C == 1 || V == 1) then return
26: C := 0;
27: for j = 0 to m − 1
28: Q := zj + nj + C;
29: zj := Q mod 2r ; C := Q/2r;
30: end for

from the memories Memory0 and Memory1, and to write back
the calculated result. When the operand and word sizes are
k = 1, 024 and r = 32, the Montgomery multiplication takes
4,386 cycles, and the total number of cycles for the modular
exponentiation is around 7 million.

ALGORITHM 3
MODULAR EXPONENTIATION (ModExp)

Input: X , N

E = (ek−1, ..., e1, e0)2,
Output: Z = XE mod N

1 : W := InvN (N);
2 : Y := MontRedc (X , N);
3 : Z := 2k mod N ;
4 : for i = k − 1 downto 0
5 : Z := MontMult (Z, Z, N , W); – squaring
6 : if (ei = 1) then
7 : Z := MontMult (Z, Y , N , W);– multiplication
8 : end if
9 : end for
10: Z := MontMult (Z, 1, N , W);

III. SPA AGAINST RSA PROCESSORS

A. Experimental condition

SPA for the RSA cryptosystem tries to obtain the secret key
by distinguishing between the power waveforms of multiplica-
tion and squaring. Fig. 2 is an image of the SPA for the RSA
cryptosystem using the left-to-right binary method, where the
key bit pattern is “1001”.

In order to capture this kind of power trace, we implemented
the 1,024-bit RSA processors on a Xilinx FPGA Virtex-II with
two types of 32-bit multipliers. One is an embedded multiplier
block in the FPGA (Type-I) and the other is a custom array
multiplier with Booth encoder (Type-II). Table I shows the
synthesis report of RSA processors using the Xilinx ISE
7.1. Fig. 3 shows the experimental FPGA board INSTAC-32
[5], and the measurement point where a register is inserted
between the FPGA ground pin and the ground plane of the
board. The power traces were monitored by an oscilloscope as
voltage drops caused by the resistor. The RSA operations were
performed at a 2-MHz operating frequency, and the sampling
rate of the oscilloscope was 400 MSa/s (million samples per
second). Table II summarizes the experimental condition.

Fig. 2. SPA attack against RSA cryptosystem.

FPGA

Measuring point

Fig. 3. Experimental FPGA board.

TABLE I
SYNTHESIS REPORT

Type-I Type-II
Number of slices 2,596 / 5,120 (50%) 3,592 / 5,120 (70%)
Number of FFs 3,197 / 1,0240 (31%) 3,336 / 1,0240 (32%)
Number of LUTs 4,152 / 1,0240 (40%) 6,024 / 1,0240 (58%)
Number of multipliers 4 / 40 (10%) 0 / 40 (0%)
Delay 15.63ns (63.97MHz) 37.52ns (26.65MHz)

TABLE II
EXPERIMENTAL CONDITION

Experimental FPGA board (INSTAC-32)
FPGA Xilinx Virtex-II xc2v1000
Crystal oscillator 2-MHz
Resistance value 5 Ohm

Experimental equipment
Oscilloscope Agilent DSO6104A

Sampling rate: 400 MSa/s
DC-voltage power supply Output voltage: 3.3 V

B. Experimental results

Fig. 4 shows the power trace obtained from the Type-I
processor, where the horizontal and vertical axes indicate time
and voltage, respectively. Two types of waveform patterns of
2.2-ms period appear in the figure, and the periods (b), (d), and
(g) show higher voltage peaks in comparison with the other 4
periods. The two types of waveforms are caused by modular
multiplication and squaring, and two multiplications are never
executed in series by the binary method of ALGORITHM
1 and 3. Therefore, it is easy to determine the secret key bits
for this part as “1101”.

By magnifying the periods (c) and (d) of Fig. 4, a time of

2.2 ms

Squaring Mult. Squaring Mult. Squaring Squaring Mult.

1 01 1

Vertical axis: 60mV/div Horizontal axis: 1.68ms/div

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Power trace of Type-I processor at 1.68ms/div.

2.2 ms

Squaring Multiplication

1
Vertical axis: 60mV/div Horizontal axis: 500µs/div

(c) (d)67.5µs

Fig. 5. Power trace of Type-I processor at 500µs/div.

Vertical axis: 60mV/div Horizontal axis: 800ns/div

Q = z + n t + C Q = z + x y + Ct = z + x y
t = t W

Q = z + V + C 0 0m i i jjj jz + V + Cz + V + Cmz + V + Cz + V + C t = z + x y+ x y Q = z + x y + CQ = z + x y + CQ = z + x y + C

Data load

Q = z + n t + CQ = z + n t + C

0.5µs Peak
Multiply-addition

Fig. 6. Power trace of Type-I processor at 800ns/div.

67.5-µs cycle is observed between the highest peaks as shown
in Fig. 5, and Fig. 6 is the more highly magnified view around
the peak. The 2-MHz clock is fed to the RSA processor, and
thus the cycle time is 0.5-µs. Multiply-addition and memory
read access are performed in the cycles colored in gray and
black, respectively.

There is no significant difference in the power waveforms
of the gray and black cycles. This suggests that the arithmetic
core is not the main reason for the differing characteristic of
the waveforms for modular multiplication and squaring. At
the highest peak in Fig. 6, the processor was executing Lines
17-18 of ALGORITHM 2 and loading the y0 data at Line
4. These operations are common for modular multiplication
and squaring, but accessing memory is different. When we
swapped the memory access patterns of the two operations, the
waveform patterns were also swapped. This clearly shows that
the power waveform of the Type-I RSA processor is dominated
by the memory access pattern.

2.2 ms

Vertical axis: 60mV/div Horizontal axis: 1.68ms/div

(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Power trace of Type-II processor at 1.68ms/div.

2.2 ms

Vertical axis: 60mV/div Horizontal axis: 500µs/div

(c) (d)
67.5µs

Fig. 8. Power trace of Type-II processor at 500µs/div.

Vertical axis: 60mV/div Horizontal axis: 800ns/div

Q = z + n t + C Q = z + x y + Ct = z + x y
t = t W

Q = z + V + C 0 0m i i jjj jz + V + Cz + V + Cmz + V + Cz + V + C t = z + x y+ x y Q = z + x y + CQ = z + x y + CQ = z + x y + C

Data load

Q = z + n t + CQ = z + n t + C

0.5µs Multiply-additon

Fig. 9. Power trace of Type-II processor at 800ns/div.

Figs. 7-9 show the power traces of the Type-II processor
corresponding to Figs. 4-6. The power consumption for the
multiply-addition in the Type-II processor is very high, and
the power used by memory access was hidden. Therefore,
the multiplication and the squaring operation could not be
distinguished in this case.

However, the high power characteristic of the custom mul-
tiplier could be used for another active attack. As shown in
Fig. 10, the power consumption of the multiplication was
significantly reduced by setting the operand Y to the specific
data of all ones. This is not difficult because the operand
Y is calculated from the plaintext input X and the public
parameter N in ALGORITHM 3. Simulation results also
showed that the power consumed by the multiplier at Lines
6-9 in ALGORITHM 2 (i.e., Q = zj + xiyj + C) was only
one seventh for random Y data. This is because the inputs
of the arithmetic core and the three registers do not change
during the j-loop operation of Lines 6-9 when Y =“111...1”.

2.2 ms

Squaring Mult. Squaring Mult. Squaring Squaring Mult.

1 01 1
Vertical axis: 60mV/div Horizontal axis: 1.68ms/div

(a) (b) (c) (d) (e) (f) (g)

Fig. 10. Power trace of Type-II processor for specific input.

Not just for the Type-II processor, but this input data control
technique can also be applied to the Type-I processor, and
its high effectiveness is confirmed by both simulation and
experiment with FPGA implementations.

IV. CONCLUSION

We implemented RSA processors with a high-radix Mont-
gomery multiplier on an FPGA, and investigated the vulnera-
bility to SPA. When the power consumption of the arithmetic
core using the built-in multiplier was low, it was easy to
distinguish between the power waveforms for modular multi-
plication and the squaring operations even for random inputs.
By investigating the power traces in detail, we found that
the different memory access patterns of the two operations
highly affected the peak levels of power dissipation. When
we used a custom multiplier, it consumed much more power,
and thus the peak differences caused by the specific memory
access patterns could not be observed. However, we introduced
a technique to control the bit pattern of the operand in the
modular multiplication, and succeeded in greatly reducing the
power dissipation in comparison with modular squaring. As
a result, we could determine the bit pattern of the secret
key used to control the multiplication and squaring when no
countermeasure was used in our FPGA implementations. We
are going to implement our RSA processor on an ASIC chip,
and will report the SPA experiments using that chip in the
future.

REFERENCES

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
CRYPTO ’99: Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology, pp. 388–397, Springer-Verlag,
1999.

[2] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security as a new
dimension in embedded system design,” in DAC ’04: Proceedings of the
41st annual conference on Design automation, pp. 753–760, ACM Press,
2004.

[3] P. L. Montgomery, “Modular multiplication without trial division,” Math.
Comp., vol. 44, no. 170, pp. 519–521, 1985.

[4] A. Satoh and K. Takano, “A scalable dual-field elliptic curve crypto-
graphic processor,” IEEE Trans. Comput., vol. 52, no. 4, pp. 449–460,
2003.

[5] T. Matsumoto, S. Kawamura, K. Fujisaki, N. Torii, S. Ishida, Y. Tsunoo,
M. Saeki, and A. Yamagishi, “Tamper-resistance standardization research
committee report,” The 2006 Symposium on Cryptography and Informa-
tion Security, pp. 1–6, 2006.

