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ABSTRACT
This paper presents SPA (Simple Power Analysis) attacks
against public-key cryptosystems implemented on an FPGA
platform. The SPA attack investigates a power waveform
generated by a cryptographic module, and reveals a secret
key in the module. We focus on chosen-message SPA at-
tacks, which enhances the differences of operating wave-
forms between multiplication and squaring correlated to the
secret key by using the input of particular messages. In par-
ticular, Yen showed a unique SPA attack against RSA cryp-
tosystem, but no verification experiment using actual soft-
ware or hardware was performed. In this paper, we imple-
mented four-types of RSA processors on an FPGA platform
in combination with two variants of the Montgomery mul-
tiplication algorithm and two different types of multipliers
for SPA attacks experiments. Then we demonstrated effec-
tiveness of various chosen-message attacks as well as Yen’s
method, and investigated the characteristics of the attacks
depending on the hardware architectures.

1. INTRODUCTION

Physical attacks on cryptographic modules using side chan-
nel information are attracting extensive attention. In order to
reveal the secret parameters the power dissipation, electro-
magnetic radiation, or operating times are measured and cor-
related to internal operations. Simple Power Analysis (SPA)
and Differential Power Analysis (DPA) proposed by Kocher
et al. [1] are known as basic and powerful side-channel at-
tacks, and many papers have been published about them.
SPA and DPA attacks against RSA were first investigated by
Kocher and Messerges [2], respectively.
The original idea of SPA introduced by Kocher is to

reveal differences between multiplication and squaring op-
erations performed during modular exponentiation accord-
ing to the bit pattern of the secret key. Such differences,
however, are not always observable for some implementa-
tions. In order to make secret information leak via the oper-
ating waveforms, chosen message attacks for RSA that use

specific data depending on the target cryptographic module
were proposed [3, 4, 5, 6]. The timing attack against RSA
with CRT [3] measures the operating times caused by ex-
tra reductions in the Montgomery multiplication [7] that de-
pend on the input data. The SPA with adaptively chosen
messages [4] can be applied to an RSA implementation us-
ing CRT based on Garner’s algorithm, where an extra mod-
ular reduction at the end of a CRT is repeatedly searched for
changes due to the input message. The DPA using the Ham-
ming weight of an intermediate value [5] was also applied
to RSA with CRT. These attacks focused on the RSA im-
plementations using specific algorithms, and thus informa-
tion about the implementations is critical to reveal the secret
keys. The first two methods can be defeated by inserting
dummy reductions, and the DPA of [5] cannot be used with
implementations using the Montgomery algorithm.
In [6], Yen proposed an SPA attack using chosen mes-

sages to break public-key cryptosystems based on modular
exponentiation, including those using Montgomery multi-
plication and/or CRT algorithms. He also described a ca-
pability of breaking the most popular SPA countermeasures
using dummy multiplication [8] by using the particular in-
put data of −1. However, no experiment on actual software
or hardware implementation was demonstrated.
In order to bear out effectiveness of the chosen-message

SPA attack, we designed four types of experimental RSA
processors on an FPGA platform combining two typical al-
gorithms (CIOS and FIOS) [9] with two kinds of multipli-
ers (an embedded multiplier in the FPGA and our custom
design). Then we analyzed the characteristic of the attack
depending on the hardware architectures and input message
pattern by monitoring a number of power waveforms.

2. MODULAR EXPONENTIATION ALGORITHM

Modular exponentiation is one of the most important arith-
metic operations for public-key cryptography such as the
RSA scheme, the ElGamal encryption scheme, and for the
Diffie-Hellman key agreement. The RSA cryptosystem em-



ALGORITHM 1
MODULAR EXPONENTIATION (L-TO-R BINARY METHOD)

Input: X ,N ,
E = (ek−1, ..., e1, e0)2

Output: Z = XE modN

1 : Z := 1;
2 : for i = k − 1 downto 0
3 : Z := Z * Z modN ; – squaring
4 : if (ei = 1) then
5 : Z := Z *X modN ; – multiplication
6 : end if
7 : end for

ALGORITHM 2
HIGH-RADIX MONTGOMERY MULTIPLICATION (MontMult)

Input: X = (xm−1, ..., x1, x0)2r ,
Y = (ym−1, ..., y1, y0)2r ,
N = (nm−1, ..., n1, n0)2r ,
W = −N−1 mod 2r

Output: Z = XY 2−r·m modN

1 : Z := 0;
2 : for i = 0 tom− 1
3 : C := 0;
4 : ti := (z0 + xiy0)W mod 2r ;
5 : for j = 0 tom− 1
6 : Q := zj + xiyj + tinj + C;
7 : if (j �= 0) then zj−1 := Q mod 2r ;
8 : C := Q/2r ;
9 : end for
10: zm−1 := C;
11: end for
12: if (Z > N ) then Z := Z −N ;

ploys modular exponentiation for encryption and decryption
as follows:

C = PE mod N, (1)
P = CD mod N, (2)

where P is the plaintext, C is the ciphertext, E and N are
the public keys, andD is the secret key. P , C,N , andD are
at least 1,024 bits in length for security reasons.
The binary method which is most commonly used for

the modular exponentiation, does multiplication and squar-
ing sequentially according to the bit pattern of the exponent
E or D. There are two variations of the algorithm. The
left-to-right binary method starts at the exponent’s MSB and
works downward. The right-to-left binary method, on the
other hand, starts at the exponent’s LSB and works upward.
ALGORITHM 1 shows a left-to-right binary method for
scanning the bits of the exponent from MSB to LSB, where
k indicates the bit length of the secret keys. This algo-
rithm always performs a squaring at Line 3 regardless of
the scanned bit value, but the multiply operation at Line 5 is
only executed if the scanned bit is 1.
One popular method to speed up the exponentiation is to

use Montgomery’s modular multiplication algorithm (Mont-
Mult) [7]. For integers X and Y , where 0 ≤ X, Y < N <
2k = R, define MontMult to be XY R−1 mod N . ALGO-
RITHM 2 shows a high-radix Montgomery multiplication

ALGORITHM 3
MODULAR EXPONENTIATION WITH MontMult

Input: X ,N
E = (ek−1, ..., e1, e0)2,

Output: Z = XE modN

1 : W := −N−1 modR;
2 : Y := XR modN ;
3 : Z := R modN ;
4 : for i = k − 1 downto 0
5 : Z :=MontMult (Z, Z,N ,W ); – squaring
6 : if (ei = 1) then
7 : Z :=MontMult (Z, Y ,N ,W ); – multiplication
8 : end if
9 : end for
10: Z :=MontMult (Z, 1,N ,W );
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Fig. 1. Chosen-message SPA against RSA.
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Fig. 2. Chosen-message SPA against RSA with dummy
multiplication.

algorithm [9] for the fast and compact implementation [10].
The k-bit operands are divided intom r-bit blocks and pro-
cessed in a nested loop. ALGORITHM 3 shows a modu-
lar exponentiation algorithm combining ALGORITHM 1
and ALGORITHM 2.

3. SPA USING SPECIFIC INPUT DATA

The basic idea of Yen’s SPA [6] is to enhance the differ-
ences between the multiplication and squaring operations to
be observed by using a chosen message that is −1. Then
we can maintain the multiplication and squaring results for
the modular exponentiation as constants. For example, let
−1 mod N(= N − 1) be the input X in ALGORITHM
1. Then the outputs of the multiplication and squaring oper-
ations during exponentiation are −1 mod N and 1 mod N ,
respectively. For brevity, we write −1 mod N and 1 mod
N as −1 and 1 in the following.
According to the above example, the multiplication and

squaring operations during exponentiation can be classified
into three types: (M) multiplication after squaring, (S1) squar-
ing after multiplication, and (S2) squaring after squaring.
These operations M, S1 and S2 in ALGORITHM 1 are



Fig. 3. RSA processor architecture.
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Fig. 4. Evaluation board (INSTAC-32).

given as

Z = 1 ∗ (−1) mod N = −1 mod N, (3)
Z = (−1) ∗ (−1) mod N = 1 mod N, (4)
Z = 1 ∗ 1 mod N = 1 mod N, (5)

respectively. When the exponentiation employs the Mont-
gomery multiplication algorithm in ALGORITHM 3, the
three operations are given as

Z = R ∗ (−R) ∗R−1 mod N

= −R mod N, (6)
Z = (−R) ∗ (−R) ∗R−1 mod N

= R mod N, (7)
Z = R ∗R ∗R−1 mod N

= R mod N, (8)

respectively. Note that the multiplication and squaring op-
erations in the right-to-left binary method are also classified
by the −1 value input.
Fig. 1 illustrates an image of the above SPA against an

RSA using the left-to-right binary method for the secret key
exponent “100101.” As described above, the squaring S1
follows the multiplication M, and the squaring S2 follows
S2 or S1. In other words,M is never followed by S2. Thus,
the bit pattern of the secret exponent can be obtained if one
of the three operations is distinct from the others.
By confining the operation sequences as well as the data

values Yen’s method can also defeat the well-known SPA
countermeasure “square-and-multiply-always”algorithms [8].
The countermeasure inserts dummy multiplications for the
zero bits of the exponent so as to perform squaring and mul-
tiplication for each bit. As shown in Fig. 2, the dummy
multiplications should be inserted before the S2 states to
hide the key bit pattern. The dummy multiplication outputs
the usual value of −1, but it is discarded, and the value of
1 is used in the following squaring that is the S2 operation,
Therefore, a dummy multiplication DM followed by the S2
can easily be distinguished from the true multiplication M
followed by the S1.

Table 1. Synthesis report
Type-I Type-II

CIOS FIOS CIOS FIOS
# of slices 3,028 3,098 4,079 4,111
# of FFs 3,215 3,252 3,369 3,333
# of LUTs 4,891 5,031 6,873 6,899
# of MULTs 4 4 0 0
Delay (ns) 15.57 15.83 34.69 43.33

4. EXPERIMENTS

4.1. RSA processor setup

We designed RSA processors using ALGORITHM 3 with
the high-radix Montgomery multiplication based on AL-
GORITHM 2 to demonstrate the effectiveness of chosen-
message SPA. One multiplier was used in our processor, and
thus the arithmetic operation Q := zj + xiyj + tinj + C
in ALGORITHM 2 is divided into two steps: a multi-
plication step (Q := zj + xiyj + C) and a reduction step
(Q := zj+tinj+C). Reference [9] classified the high-radix
Montgomery multiplication algorithms using one multiplier
into five algorithms, and the Coarsely Integrated Operand
Scanning (CIOS) and the Finely Integrated Operand Scan-
ning (FIOS) methods are typical approaches. The CIOS al-
gorithm executes the multiplication and reduction steps sep-
arately by modifying ALGORITHM 2 using two j-loops,
and the FIOS algorithm alternates between the steps in each
word for j. The characteristics of the power waveforms are
strongly dependent on the sequence of multiplication steps
and reduction steps, and hence, we used the CIOS and FIOS
methods for this experiment.
Fig. 3 shows a block diagram of our RSA processor us-

ing the CIOS algorithm, where the data bus width is r bits
to fit the word size of the multiplier. The “Multiplication
block” repeats the multiply-additions in accord with the bit
pattern output from the shift register K to perform modular
exponentiation. The r-bit Arithmetic core in the Multiplica-
tion block performs multiply-additions (Q := z j +xiyj +C
or Q := zj + tinj + C) In this experiment, the operand and
word sizes are k = 1, 024 and r = 32.
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Fig. 5. Power waveforms of CIOS Type-I processor: (a) random value input, (b) −1 value input, (c) magnified view of (b).
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Fig. 6. Power waveforms of FIOS Type-I processor: (a) random value input, (b) −1 value input, (c) magnified view of (b).

The 1, 024-bit RSA processors with CIOS and FIOSmeth-
ods were implemented on a Xilinx FPGAVirtex-II (xc2v1000).
Power consumption of the arithmetic core is greatly influ-
enced by the multiplier architecture, and so we used two
types of 32-bit multipliers for each method: an embedded
multiplier in the FPGA (Type-I) and a custom array multi-
plier (Type-II). Table 1 shows the synthesis report of the four
RSA processors using the Xilinx ISE 7.1.

4.2. SPAs against RSA processors

Fig. 4 shows the experimental FPGA board INSTAC-32,
and the measurement point where a resistor (5Ohm) is in-
serted between the FPGA ground pin and the ground plane
of the board. The power traces were monitored with an os-
cilloscope (Agilent MSO 6104A) as voltage drops caused
by the resistor. The RSA operations were performed at a 2-
MHz operating frequency, and the sampling rate of the os-
cilloscope was 80 MSa/s (million samples per second). The
modulusN was arbitrary in this experiment.
Figs. 5 (a) and (b) show the power traces generated by

the CIOS Type-I processor for input data with random val-
ues and −1, respectively. Fig. 5 (c) is a magnified view of
Fig. 5 (b). In Fig. 5 (a), we can not see any relationship be-
tween the waveform patterns and the operations. In contrast,
differences for the operations are clearly visible in Fig. 5 (b).
The multiplicationM generated the 2.2-ms waveforms with

the highest voltage peak, and the waveforms for the squar-
ings S1 and S2 were at the middle and the lowest ranges,
respectively. As described in Section 3, we only need to dis-
tinguish any one of the operations from the others to reveal
the secret key bits. Also, Fig. 6 shows the power traces
of the FIOS Type-I processor corresponding to Fig. 5. In
Fig. 6 (b), we can see the differences for the multiplication
and squaring operations more clearly than in the CIOS pro-
cessor. The main reason is that the FIOS algorithm always
changes two operands for the multiplier and thus has larger
differences in transistor switching. We confirmed here that
Yen’s method can enhance SPA against RSA circuits with
two typical Montgomery multiplication algorithms.

Figs. 7 and 8 show the power traces of the Type-II pro-
cessors corresponding to Figs. 5 and 6, respectively. The
relative power consumption of the arithmetic core was very
high, almost double compared to the Type-I processor. The
result shows that we can still expose the differences of the
waveform patterns using the chosen-message approach (Figs.
7 (b) and 8 (b)). This suggests that the chosen-message ap-
proach would be applied to other platforms (e.g. ASICs),
in which the power consumed by the arithmetic core would
dominate the power waveforms.

Finally, Fig. 9 shows the power trace for the FIOS Type-
I processor with themost popular SPA countermeasure,which
is the square-and-multiply-always method [8]. The dummy
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Fig. 7. Power waveforms of CIOS Type-II processor: (a)
random value input, and (b)−1 value input.
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Fig. 8. Power waveforms of FIOS Type-II processor: (a)
random value input, and (b)−1 value input.

multiplications DM are inserted to alternate between multi-
plication and squaring without regard to the secret key bits.
However, we can distinguish between the true multiplica-
tions M and the dummy multiplications DM by checking if
the following squaring is S1 (whichmeans a truemultiplica-
tionM) or S2 (which means a dummy multiplication DM).
As we examined using the four types of RSA implemen-

tations on the FPGA board, the chosen-message method re-
sulted in large differences in the operating waveforms de-
pending on the secret key bits, which are easily visible to
the eye, and no special equipment is required. Not only the
straightforward implementations, but even the countermea-
sure using dummy multiplications was defeated.

4.3. Discussion on other fixed-value input SPAs

In the following, we discuss the possibilities of other chosen-
message input SPAs against RSA hardware implementations.
When an RSA processor is implemented by using the

Montgomerymultiplication algorithm like ALGORITHM
2, the input value of R−1 = 2−k also produces differences
in the power waveforms as large as the input value of −1
discussed above. This is because the input value of R−1 is
converted into the Montgomery domain with Equation (9)
at Line 2 in ALGORITHM 3, prior to the Montgomery

2.2ms
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Fig. 9. Power waveform of FIOS Type-I processor using
dummymultiplication countermeasure with−1 value input.

multiplication.

Y = R−1R = 1 mod N (9)

Therefore, Y = 1 is always multiplied in ALGORITHM
2, and the output of the modular multiplication is identical
to the other input (not one). More precisely, y j = 0 for
j = 1 ∼ m − 1 at Line 6 in ALGORITHM 2 (Q :=
zj+xiyj+tinj+C). The power consumed by the multiplier
for the modular multiplication should be much lower than
that of the modular squaring whose input is not one.
Fig. 10 shows the power traces generated by the CIOS

and FIOS processors with the Type-I/II multipliers for the
input of R−1 = 2−1024. The lower peaks for theM in these
pictures indicate that less power is consumed. According
to the result from the Xilinx XPower simulator, the power
consumed by the CIOS arithmetic core at Line 6 in ALGO-
RITHM 2 for the R−1 input was only one seventh in com-
parison with random input. In addition, the data of the three
registers (X, Y, and C) in the CIOS core is almost unchanged
during the multiplication. That also reduces the power con-
sumption. As a result, we can find the secret key bits for all
of the processors. We also examined the all-one value in the
Montgomery domain for the four processors and obtained
the secret key bits for the same reason, because the data in
the registers and the inputs to the multiplier do not change.
The above observation suggests that there are many po-

tential inputs that produce large differences in the power
waveforms. For example, there are a lot of almost all-zero
or all-one values in the Montgomery domain. Fig. 11 shows
the power traces obtained from the four processors whose
1, 024-bit input contained an 800-bit stream of zeros with
224 random bits. We could determine the secret key bits for
all of the processors. These results showed that there are at
least 2224 variations of the input data that will expose the
secret key bits on the 1, 024-bit processors.

5. CONCLUSIONS

This paper demonstrated and analyzed effectiveness of the
chose-message SPA attacks for RSA implementations on an
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Fig. 10. Power waveforms of the four processors with R−1

value input: (a) CIOS Type-I, (b) FIOS Type-I, (c) CIOS
Type-II, and (d) FIOS Type-II.

FPGA platform. We implemented four types of RSA pro-
cessors (two algorithms with two multipliers) on the Xil-
inx FPGA. The experimental results clearly showed that the
differences between multiplication and squaring operations
for all of the implementations were easily visible to the eye,
while the power traces using random inputs did not expose
the secret information. In addition, the chosen-message SPA
can also defeat the most popular SPA countermeasures using
square-and-multiply-always algorithms.
We mainly analyzed the waveform characteristics for the

input of−1 value, but there are many other values that cause
large difference on the waveform patterns corresponding to
the secret key, such as R−1 and values with a long zero
bit stream, as discussed above. The effects of such values
depend on the algorithm, architecture, and platform of the
cryptographicmodules, and thus we will continue to investi-
gate the relationships between the data patterns and the char-
acteristics of the implementations.
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