TDEA Hardware Macro Specification

Version	Update	Description
0.1	2007/09/04	Initial version is created
0.2	2007/09/25	Timing chart is modified

1. Overview

The features of this TDEA hardware macro are summarized in Table 1. Detailed algorithm is designed in the FIPS 46-3 [1] specification. Only the ECB (Electronic Code Book) mode is supported, but the other modes such as CBC (Cipher Block Chaining) can be easily supported by using additional data buffers and a control circuit.

Algorithm	TDEA			
Data block size	64 bits			
Key size	Three of 64 bits			
Mode of operation	Electronic Code Book (ECB)			
Source file name	TDEA.v			
Description Language	Verilog-HDL			
Top module name	TDEA			
Throughput	64 bit / 48 clock			
Round keys	On-the-fly			

 Table 1
 TDEA hardware macro overview

2. I/O ports

I/O ports of the TDEA macro are summarized in Table 2.

Port name	Direction	Width	Description
Kin	In	64	Key input
Din	In	64	Data input
Dout	Out	64	Data output
Krdy	In	1	When Krdy=1, a secret key is latched in an internal register, and initial key scheduling process is executed. If Drdy and Krdy assigned to be '1' at the same time, Krdy=1 has priority.
Drdy	In	1	When Drdy=1, a plaintext (or ciphertext) data is latched in an internal register, and encryption (or decryption) process is

Table 2I/O ports

			started.
EncDec	In	1	Encryption and decryption are executed when EncDec=0
			and EncDec=1, respectively. Bit data on the port EncDec is
			stored in an internal register when encryption or decryption
			starts in response to Drdy=1.
	In	1	Reset signal. Sequencer logic and internal registers are reset
DSTn			when this signal is assigned to 0. Reset can be executed any
Kötti			time when the clock signal CLK is input, even if the enable
			signal EN=0.
EN	In	1	Enable signal. When EN=1, this macro is activated.
	In	1	System clock. All registers are synchronized with the rising
ULK			edge of this signal.
	Out	1	Busy status flag. This signal is assigned to 1 during
DCV			encryption, decryption, or key generation process is
B3 1			executed. When this signal is 1, signals Drdy and Krdy are
			ignored.
	Out	1	When round-key generation process is completed, this signal
V-14			becomes 1 during the next one clock cycle, and then it goes
KVId			0. Soon after that, encryption and decryption processes are
			ready to start.
	Out	1	When encryption or decryption process is completed and
Deld			cipher text or plain text are ready on the data output port
Dvia			Dout, this signal becomes 1 during the next one clock cycle,
			and then it goes 0.

3. Hardware Architecture

The hardware architecture of the TDEA macro is shown in Fig. 1.

Fig.1 Hardware architecture of the TDEA macro

4. Timing Chart

Fig. 2 shows the timing chart of the encryption process of the TDEA macro in the minimum cycles for the control signals. The operations are performed as follows.

CLK1: The sequencer logic is initialized by resetting the signal RSTn to 0.

CLK2~4: By asserting Krdy=1, three 64-bit secret keys on the port Kin are stored to internal registers. The flags Kvld and BSY are set to 1 and 0 in CLK4, respectively.

CLK5: The signal Drdy is set to 1, and the 64-bit plaintext is stored into an internal register.

CLK6: The encryption process is started in accordance with EncDec=0, and BSY is set to 1.

CLK7~52: The encryption takes 48 clocks, and thus it is completed in CLK53. The ciphertext is output from the 64-bit port Dout. The flag BSY goes 0, and Dvld goes to 1.

5. Reference

[1] "FIPS PUB 46-3 DATA ENCRYPTION STANDARD (DES)," NIST, Oct 1999.