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Abstract—3D measurement using a moving camera is a tech-
nique to measure the 3D shape of an object from a set of images
taken from different viewpoints. One of the well-known 3D mea-
surement methods is Structure from Motion (SfM) using feature-
based correspondence matching. However, only a limited number
of 3D points are measured by this method and are not sufficient
to measure the fine 3D shape of the object. Addressing this
problem, this paper proposes a novel 3D measurement algorithm
combining SfM using feature-based matching to estimate camera
parameters and area-based correspondence matching to obtain
dense correspondence. Using the proposed algorithm, this paper
also proposes an easy-to-use and accurate 3D shape measurement
system from two views captured with a moving consumer digital
camera. Through a set of experiments, we demonstrate that the
proposed system can measure the 3D shape of the object in about
20 seconds with the measurement accuracy comparable with that
of the 3D laser scanner.

Index Terms—3D measurement, Structure from Motion,
feature-based matching, area-based matching

I. INTRODUCTION

Recently, 3D measurement has attracted much attention in
various fields of industry, medicine, etc. Existing practical 3D
measurement systems can be broadly classified into active
systems with laser scanning or structured light projection and
passive systems with binocular or multiple cameras. The active
systems require the specific measurement equipment depend-
ing on the target objects and may be liable to be expensive.
Also, the application of active systems are limited, since the
measurement equipment for active systems are relatively large.
On the other hand, the passive systems need to select the stereo
cameras depending on the target and to calibrate cameras
in advance. Hence, the technical knowledge is required for
users. As mentioned above, it is hard for the users without the
technical knowledge to introduce the existing 3D measurement
system for practical use in their daily life.

Structure from Motion (SfM) with a moving monocular
camera is known as a simple approach to measure the 3D
shape of an object [1], [2]. Using this approach, the user
can measure 3D points of the object from multiple images
captured with a monocular camera without camera calibration.
So far, a variety of SfM algorithms have been proposed and
the measurement accuracy of the state-of-the-art algorithms
is acceptable in practical use even if the images are captured
with a moving monocular camera [3]. However, only a limited
number of 3D points are measured and are not sufficient to
measure the fine 3D shape of the object, since SfM employs a

feature-based correspondence matching such as Scale Invariant
Feature Transform (SIFT) [4]. Although Multi-View Stereo
(MVS) algorithms with SfM can be used to measure dense
3D points of the whole object [1], [5], most of existing MVS
algorithms have the drawback of high computational cost [6].

Addressing the above problems, this paper proposes an
easy-to-use and accurate 3D measurement system with a
consumer digital camera for the users without the technical
knowledge. The proposed system employs a 3D measurement
algorithm combining SfM using feature-based matching to
estimate camera parameters and area-based corresponding
matching to obtain dense correspondence. The use of the
proposed system makes it possible to measure accurate and
dense 3D shape of the object from two views captured
with a moving consumer digital camera. Through a set of
experiments, we demonstrate that the proposed system can
measure the 3D shape of the object with an accuracy of less
than 1 mm compared with the measurement result by the laser
3D scanner. We also demonstrate that all the processes of the
proposed system is finished in about 20 seconds with a mid-
range laptop computer.

II. 3D MEASUREMENT SYSTEM USING A MOVING

CAMERA

The proposed system consists of a consumer digital camera
and a computer. The users obtain the 3D shape of an object
only by capturing two images of the object using a digital
camera, where most of existing consumer digital cameras can
be used in the proposed system. The input images to the pro-
posed system have to be in focus and be without any halation.
The images captured with existing consumer digital cameras
satisfy the above conditions, since the aperture, shutter speed
and focal length of these cameras are automatically configured
by their automatic focus and exposure functions. Hence, the
users can capture suitable images for 3D measurement without
any technical knowledge. In addition, the captured images are
automatically transferred by using the digital camera with Wi-
Fi access or the memory cards with wireless access such as
Eye-Fi [7] so as to improve the convenience of the system.

The procedure of the proposed system consists of 3 steps:
(i) camera parameter estimation, (ii) stereo rectification and
(iii) 3D shape measurement as shown in Fig. 1. We describe
the details for each step as follows.
(i) Camera parameter estimation
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Fig. 1. Processing flow of the proposed system: (a) input stereo image
pair, (b) result of feature-based correspondence matching, (c) rectified stereo
image pair, (d) result of area-based correspondence matching and (e) 3D
measurement result.

In this step, the camera parameters such as the intrinsic and
extrinsic parameters are estimated.

First, the user captures two images of the target object with
a digital camera as shown in Fig. 1 (a). Let a stereo image
pair be I1 and I2.

Next, the intrinsic parameters of each camera are calculated.
The intrinsic parameter matrix A of a camera is defined by

A =

⎛
⎝

f w
D 0 w

2

0 f w
D

h
2

0 0 1

⎞
⎠ , (1)

where f is the focal length of the camera, w and h are the
width and height of the image, respectively, and D is the width
of the image sensor. The focal length f and the image resolu-
tion (w, h) are obtained from Exif (Exchangeable image file
format) information of the image [8]. The image sensor width

D depends on the camera and is given in the specification.
According to Eq. (1), the intrinsic parameter matrices A1 and
A2 are calculated from I1 and I2, respectively.

Then, the corresponding point pairs between the images I 1

and I2 are obtained by a feature-based corresponding matching
method as shown in Fig. 1 (b). We employ a feature-based cor-
responding matching method, since the stereo images include
various geometric transformation such as scaling, rotation and
nonlinear transformation due to a camera movement and a
change of focal length. Using the corresponding point pairs
and the intrinsic parameters A1 and A2, the extrinsic param-
eters R1→2 and t1→2 are calculated by 5-point algorithm [9]
with RANSAC (RANdom SAmple Consensus) [10].

Finally, the intrinsic and extrinsic parameters are optimized
by using bundle adjustment [11], since the accuracy of these
parameters has an impact on the succeeding steps.

(ii) Stereo rectification
In this step, the stereo image pair I1 and I2 is transformed

into the rectified stereo image pair I ′
1 and I ′2 by stereo

rectification as shown in Fig. 1 (c) in order to employ an area-
based correspondence matching method. To obtain accurate
and dense 3D points, we employ an area-based correspondence
matching method in the step (iii). However, it is hard for an
area-based method to obtain the correspondence between the
stereo image pair having large perspective distortion. Hence,
we reduce the perspective distortion between the stereo image
pair by stereo rectification. Stereo rectification is to transform
an image pair as if the image pair is captured with a parallel
stereo camera [1], that is, the scaling in vertical direction
and rotation between the image pair are reduced and the
geometric deformation between the image pair is also limited
to horizontal direction. Note that the correspondence search
between a stereo image pair is reduced to 1D search by
stereo rectification. The rectified stereo image pair I ′

1 and I ′2
is obtained by transforming I1 and I2 with the homography
matrix calculated from the camera parameters obtained in the
step (i). Thus, the use of the stereo rectification makes it
possible to reduce the perspective distortion between an stereo
image pair in order to measure accurate and dense 3D points
of an object.

(iii) 3D shape measurement
In this step, the dense correspondence point pairs are

obtained by using an area-based correspondence matching
method as shown in Fig. 1 (d). Unlike the feature-based
correspondence matching method, the area-based correspon-
dence matching method can obtain the point on the input
image corresponding to the reference point placed on the
arbitrary position in the reference image. Hence, when many
reference points are placed on the reference image, the dense
corresponding points can be obtained so as to measure the fine
3D structure of the object. The corresponding points with sub-
pixel accuracy can be also obtained by using the model fitting
technique [12], [13]. Finally, a set of 3D points are calculated
from the camera parameters obtained in the step (i) and the
corresponding point pairs as shown in Fig. 1 (e).
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Fig. 2. Performance evaluation using a fixed stereo camera: (a) stereo images
(1,280×960 pixels) and (b) ground truth 3D model measured with KONICA
MINOLTA VIVID.

III. EXPERIMENTS AND DISCUSSION

This section describes experiments for evaluating perfor-
mance of the proposed system. We perform two experiments:
(i) performance evaluation using a fixed stereo camera and (ii)
performance evaluation using consumer digital cameras.

A. Performance Evaluation Using Fixed Stereo Camera

We evaluate the accuracy of the camera parameter estima-
tion methods such as SfM using feature-based matching and
the camera calibration using checkerboard patterns [14]. In
general, it is difficult to directly compare the accuracy of
camera parameter estimation methods, since the true values
of camera parameters are unknown. Therefore, in this paper,
we evaluate the accuracy of 3D measurement using a stereo
image pair taken with a fixed stereo camera to compare the
accuracy of camera parameter estimation methods. We also
compare the measurement accuracy of 3D shape in terms of
area-based correspondence matching methods.

The stereo camera is composed of two monocular cameras
(Point Grey FL2G-12S2M-C), and Fig. 2 (a) shows captured
images with the stereo camera. The measurement accuracy
is evaluated by comparing the measurement results and the
ground truth 3D mesh model measured by the laser scanner
(KONICA MINOLTA VIVID) as shown in Fig. 2 (b). Using
the Iterative Closest Point (ICP) algorithm [15], we align the
measured 3D points and the ground truth 3D mesh model of
the object. The outlier rate and RMS (Root Mean Square)
error are calculated between the aligned data. In this paper,
the outlier is defined by a point whose fitting error is greater
than 1 pixel in the stereo images. Also the RMS errors are
calculated for 3D points without outliers.

According to application, the proposed system can se-
lect (i) the feature-based correspondence matching method
to estimate camera parameters and (ii) the area-based cor-
respondence matching method to obtain the dense corre-
sponding point pairs. As for the feature-based correspon-
dence matching method, we compare the following 4 meth-
ods: SIFT [4], Speeded-Up Robust Features (SURF) [16],
Binary Robust Invariant Scalable Keypoints (BRISK) [17]
and Affine-SIFT (ASIFT) [18]. For comparison, we use the
camera parameters estimated by Zhang’s camera calibration
method using images of a planar checkerboard [14]. As for
the area-based correspondence matching method, we com-
pare the following 4 methods: Sum of Absolute Differences

TABLE I
OUTLIER RATES [%]

SAD SSD NCC POC
CALIB 42.6 26.3 1.7 1.0
BRISK 53.8 44.2 5.0 2.6
SURF 50.3 35.0 1.5 0.9
SIFT 52.5 38.3 1.5 0.9

ASIFT 57.1 44.2 3.7 2.7

TABLE II
RMS ERRORS [MM]

SAD SSD NCC POC
CALIB 1.39 1.30 0.97 0.90
BRISK 1.19 1.17 1.03 0.95
SURF 1.23 1.23 0.69 0.67
SIFT 1.21 1.18 0.67 0.65

ASIFT 1.19 1.16 1.01 0.97

(SAD) [12], Sum of Squared Differences (SSD) [12], Nor-
malized Cross-Correlation (NCC) [12] and Phase-Only Cor-
relation (POC) [13]. All the methods employ a coarse-to-fine
strategy using image pyramids with local block matching [13].
The number of layers for coarse-to-fine search is 4. For SAD,
SSD and NCC, the size of the matching window is 16 pixels
× 15 lines. For POC, the size of the matching window is 32
pixels × 15 lines. The size of the matching window for POC
is equivalent to that for the other methods, since the Hanning
window is applied to the matching window to reduce the effect
of discontinuity at signal border in DFT [13].

Table I shows outlier rates in the 3D measurement, where
CALIB denotes the Zhang’s camera calibration method. Table
II shows RMS errors in the 3D measurement. As for the area-
based methods, POC exhibits lower outlier rate and RMS error
than others regardless of the feature-based methods. As for the
feature-based methods, SIFT with POC exhibits the lowest
outlier rate and RMS error. As a result, the proposed system
combining SIFT and POC can measure the 3D shape of the
object with the accuracy that is comparable with the laser
scanner.

Tables III and IV show the computation time of camera
parameter estimation and dense correspondence matching,
respectively. The computation time is measured on Intel Core 2
Duo E6850 (3.00 GHz). The proposed system combining SIFT
and POC, which exhibits the lowest RMS error in Table II,
can perform 3D shape measurement in about 20 seconds.

B. Performance Evaluation Using Digital Cameras

We use 2 consumer digital cameras: a digital single-lens
reflex camera (Panasonic LUMIX DMC-GF1) and a mobile-
phone camera (Apple iPhone 4S) to evaluate performance
of the proposed system. In this experiment, we employ the
proposed system combining SIFT and POC, which exhibits the
lowest RMS error. We use a cat carving, a dog curving and an
interior tile as the target object. Fig. 3 shows 3D measurement
results. As a result, the proposed system can measure the
accurate and dense 3D points of various objects using the
consumer digital camera. Even if we use the mobile phone
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Outlier rate = 6.6 %, RMS error = 0.34 mm Outlier rate = 15.1 %, RMS error = 0.51 mm

Outlier rate = 3.0 %, RMS error = 0.78 mm Outlier rate = 2.5 %, RMS error = 0.79 mm

Outlier rate = 2.8 %, RMS error = 0.79 mm Outlier rate = 1.6 %, RMS error = 0.77 mm

Fig. 3. Results of 3D measurement: (a), (b) and (c) with Panasonic LUMIX DMC-GF1, and (d), (e) and (f) with Apple iPhone 4S.

TABLE III
COMPUTATION TIME OF CAMERA PARAMETER ESTIMATION [S]

BRISK SURF SIFT ASIFT
1.02 1.90 12.92 86.20

TABLE IV
COMPUTATION TIME OF DENSE CORRESPONDENCE MATCHING [S]

SAD SSD NCC POC
1.17 1.18 3.45 5.33

camera to capture the images, the 3D measurement accuracy
is below 1 mm compared with the measurement result by the
laser scanner.

IV. CONCLUSION

This paper has proposed an easy-to-use and accurate 3D
measurement system using a consumer digital camera. The
use of the proposed system makes it possible to measure
the accurate 3D shape of the object only by capturing two
images without any technical knowledge. Through a set of
experiments, we have demonstrated that the proposed system
can measure the 3D shape of the object in about 20 seconds
with the measurement accuracy comparable with that of the 3D
laser scanner. The proposed system can be extended to deal
with multi-view images by combining the 3D measurement
results obtained from every stereo image pair on the uniform
coordinate system.
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