

位相限定相関法を用いた超解像デインタレーシング

「沼 徳仁 $^{\dagger a}$ 」 伊藤 康 $-^{\dagger}$ 青木 孝文 $^{\dagger b}$ 近藤 敏志 $^{\dagger \dagger}$

Super-Resolution De-Interlacing Using Phase-Only Correlation

Norihito NUMA^{†a)}, Koichi ITO[†], Takafumi AOKI^{†b)}, and Satoshi KONDO^{††}

あらまし 本論文では,位相限定相関法(Phase-Only Correlation: POC)を用いた超解像デインタレーシン グを提案する.一般に,インタレース映像は,プログレッシブ映像を垂直方向に1/2 ダウンサンプリングしたも のと解釈できるため,垂直方向にエイリアシングが生じる.そこで,信頼性の高いサブピクセル動き推定と超解 像の手法を用いることにより,インタレース映像に含まれるエイリアシングを解消しつつ,映像を垂直方向に2 倍拡大し,高品質なプログレッシブ映像を生成するデインタレーシング手法を提案する.一般に,超解像の処理 は計算量が多いため,次の二つの考えに基づき,効率的なアルゴリズムを設計する.まず,画像をブロックに分 割し,ブロック単位での超解像を行う.また,この超解像の処理においては,繰返し最適化などの手法を用いず に,ブロック単位のサブピクセル動き推定の結果を用いて,周波数領域で折り畳まれたエイリアシング成分を直 接展開する方法を用いる.このような手法においては,サブピクセル動き推定の精度が直接的に画質に影響を与 えることになる.このため,位相限定相関法を用いた高精度動き推定アルゴリズムを適用し,高品質なデインタ レーシングを実現する.

キーワード デインタレーシング, 超解像, 動き推定, 位相限定相関法

1. まえがき

近年,映像表示デバイスや画像処理技術の発展によ り,高解像度な映像を大画面に表示することが可能と なってきている.そのような映像表示デバイスの多く は,プログレッシブ(順次走査)方式を採用している. これに対し,既存の映像ソースはインタレース(飛越 し走査)映像であることが多く,そのままでは映像表 示デバイスの性能を十分に発揮することができない. そのため,デインタレーシングと呼ばれる映像処理に より,プログレッシブ映像に変換してから表示する必 要がある.デインタレーシングとは,インタレース映 像の各フィールドにおいて,飛び越されている走査線 (映像信号のないライン)を補間することでプログレッ シブ映像に変換する処理である[1].インタレース映像

* 東北大学大学院情報科学研究科,仙台市 Graduate School of Information Sciences, Tohoku University, 6–6–05 Aramaki Aza Aoba, Aoba-ku, Sendai-shi, 980– 8579 Japan

- ^{††} パナソニック株式会社,門真市 Panasonic Corporation, 1006 Kadoma, Kadoma-shi, 571-8501 Japan
- a) E-mail: numa@aoki.ecei.tohoku.ac.jp
- b) E-mail: aoki@ecei.tohoku.ac.jp

は, 垂直方向に 1/2 ダウンサンプリングされた二次元 信号と解釈できるため, 垂直方向にエイリアシングが 発生している.そのため,デインタレーシングは,エ イリアシングを含む映像を垂直方向に2倍拡大する処 理として扱うことができる.

エイリアシングを含む映像からの画像拡大手法とし ては,超解像を用いた手法が研究されている[2]~[6]. 一般的に,超解像とは,複数の微小に位置ずれした低 解像度画像から一つの高解像度画像を生成する技術で ある.広く研究されている手法は,再構成型の超解像で あり,一般的には空間領域における繰返し最適化によっ て高解像度画像を推定する手法が用いられる.再構成 型の超解像では,初期設定の高解像度画像から観測モ デルに従って観測画像を生成し,実際の観測画像との差 分を最小化するように高解像度画像を更新する.空間 領域で処理することで、様々な観測モデルに柔軟に対応 できるが, 収束するまで繰返し処理が必要となるため, 計算コストが高い.一方,観測時の画像間の変形を平行 移動のみに簡略化すると,超解像は,周波数領域で折り 畳まれたエイリアシング成分を直接展開する処理にな る.これは,周波数ごとの単純な連立方程式を解く問題 となり,周波数領域において容易に解くことができる. 本論文では、インタレース映像を高品質なプログレッシブ映像に変換するために、超解像処理を利用したデインタレーシング手法を提案する.一般に、超解像処理は計算量が多い.そこで、隣接フィールドの局所領域では画像間の関係が平行移動で近似可能と考え、画像をプロックに分割し、プロック単位で周波数領域での超解像処理を行う.周波数領域での超解像によって高品質な高解像度画像を得るためには、低解像度画像ブロック間の位置ずれ量を高精度に求めることが極めて重要である.そこで、画像の位相情報に基づく高精度画像マッチング手法である位相限定相関法(Phase-Only Correlation: POC)[7]~[10]を用いた周波数領域超解像アルゴリズムを提案する.

筆者らの研究グループにより,位相限定相関法を用 いた画像マッチング手法は,コンピュータビジョンの ためのサプピクセル画像位置合せや,バイオメトリク ス認証のための画像照合に適用され,その有効性が確 認されている[9].本論文では,位相限定相関法による 対応点探索[8]を用いて,サブピクセル分解能の動き ベクトル推定を実現し,高品質な超解像を可能にした. 性能評価実験により,提案する超解像デインタレーシ ングを用いることで,インタレース映像を高品質なプ ログレッシブ映像に変換できることを示す.

2. 位相限定相関法に基づく動き推定

複数の画像を用いた超解像処理においては,高精度 な画像の位置合せが重要となる.本論文では,位相限 定相関法に基づく動き推定を用いることで,低解像度 画像間の高精度な位置合せを実現する.

2.1 位相限定相関関数

画像サイズ $N_1 \times N_2$ ピクセルの二つの画像プロ ックを $f(n_1, n_2)$, $g(n_1, n_2)$ とする.定式化の便宜 上,離散空間のインデックスを $n_1 = -M_1, \dots, M_1$, $n_2 = -M_2, \dots, M_2$ とし,画像サイズを $N_1 = 2M_1+1$ ピクセル, $N_2 = 2M_2+1$ ピクセルとする.なお,ここ では説明を簡単にするために離散空間のインデックス を正負対称にとり,かつ二次元画像信号の大きさ N_1 , N_2 を奇数としているが,これは必須ではない.すな わち,通常よく用いられるように非負のインデックス を用い, N_1 , N_2 を任意の正の整数に設定するように 一般化することが可能である.

画像ブロック $f(n_1, n_2)$ 及び $g(n_1, n_2)$ の二次元離 散フーリエ変換 (2D DFT) をそれぞれ $F(k_1, k_2)$, $G(k_1, k_2)$ として次式で与える.

$$F(k_1, k_2) = \sum_{n_1 n_2} f(n_1, n_2) W_{N_1}^{k_1 n_1} W_{N_2}^{k_2 n_2}$$
$$= A_F(k_1, k_2) e^{j\theta_F(k_1, k_2)}$$
(1)

$$G(k_1, k_2) = \sum_{n_1 n_2} g(n_1, n_2) W_{N_1}^{k_1 n_1} W_{N_2}^{k_2 n_2}$$
$$= A_G(k_1, k_2) e^{j\theta_G(k_1, k_2)}$$
(2)

ここで, $k_1 = -M_1, \dots, M_1$, $k_2 = -M_2, \dots, M_2$, $W_{N_1} = e^{-j\frac{2\pi}{N_1}}$, $W_{N_2} = e^{-j\frac{2\pi}{N_2}}$ であり, $\sum_{n_1n_2}$ は, $\sum_{n_1=-M_1}^{M_1} \sum_{n_2=-M_2}^{M_2}$ を表す. $A_F(k_1, k_2)$, $A_G(k_1, k_2)$ は振幅スペクトルであり, $\theta_F(k_1, k_2)$, $\theta_G(k_1, k_2)$ は位 相スペクトルである.このとき, $F(k_1, k_2) \ge G(k_1, k_2)$ の正規化相互パワースペクトルを次式で与える.

$$R(k_1, k_2) = \frac{F(k_1, k_2)\overline{G(k_1, k_2)}}{|F(k_1, k_2)\overline{G(k_1, k_2)}|}$$
$$= e^{j\theta(k_1, k_2)}$$
(3)

ここで $\overline{G(k_1,k_2)}$ は $G(k_1,k_2)$ の複素共役を示す.また, $\theta(k_1,k_2) = \theta_F(k_1,k_2) - \theta_G(k_1,k_2)$ である.

位相限定相関関数(POC 関数)r(n₁,n₂) は R(k₁,k₂)の二次元逆離散フーリエ変換(2D IDFT)で あり,次式で定義される.

$$r(n_1, n_2) = \frac{1}{N_1 N_2} \sum_{k_1 k_2} R(k_1, k_2) W_{N_1}^{-k_1 n_1} W_{N_2}^{-k_2 n_2}$$
(4)

ここで, $\sum_{k_1k_2}$ は, $\sum_{k_1=-M_1}^{M_1} \sum_{k_2=-M_2}^{M_2}$ を表す. 二 つの画像が類似している場合, POC 関数は, デルタ 関数に近い極めて鋭いピークを有する. この相関ピー クの座標を求めることで, 画像間の動きを高精度に検 出することができる.

画像ブロック $g(n_1, n_2)$ が $f(n_1, n_2)$ を (δ_1, δ_2) だけ 微小に平行移動させた画像である場合を考える.こ こで, δ_1 及び δ_2 は,それぞれ n_1 及び n_2 方向のサ ブピクセルレベルの移動量を表している.このとき, $f(n_1, n_2)$ と $g(n_1, n_2)$ の POC 関数は次式で与えら れる.

$$r(n_1, n_2) \approx \frac{\alpha}{N_1 N_2} \frac{\sin\{\pi(n_1 + \delta_1)\}}{\sin\{\frac{\pi}{N_1}(n_1 + \delta_1)\}} \frac{\sin\{\pi(n_2 + \delta_2)\}}{\sin\{\frac{\pi}{N_2}(n_2 + \delta_2)\}}$$
(5)

ここで, $\alpha = 1$ である.上式は,画像が (δ_1, δ_2) だけ

微小に平行移動した場合の POC 関数の一般形を表している. α は,相関ピークの高さを表すために導入されたパラメータである.画像に対して無相関なノイズが加わると α の値が減少するため,実際には $\alpha \leq 1$ となる.

POC 関数を用いて高精度に平行移動量を推定する ために,(i) 窓関数の適用,(ii) スペクトル重み付け, (iii) 相関ピークモデルのフィッティングを行う.これ は,文献[9] に記載された一連の手法を取捨選択し,超 解像向けに実験的に最適化したものである.

(i) 窓関数の適用

DFT では,信号が周期的に循環することを仮定す るため,画像端での信号の不連続性が問題となる.不 連続性の影響を軽減するために,画像に対して窓関数 を適用する.本論文では,半値幅が画像プロックサイ ズの半分のハニング窓を用いる.

(ii) スペクトル重み付け

一般に,自然画像のエネルギーは低周波領域に集中 し,高周波成分のエネルギーは相対的に小さい.そこ で,低域型のスペクトル重み付け関数を適用し,信頼 性の低い高周波成分の影響を抑制することにより,大 幅な精度向上が可能である.本論文では,次式で表さ れるガウス型の重み付け関数を用いる.

$$H(k_1, k_2) = e^{-2\pi^2 \sigma^2 \left(\frac{k_1^2}{N_1^2} + \frac{k_2^2}{N_2^2}\right)}$$
(6)

このとき,式(5)に対応する相関ピークモデルは次式のように変化する.

$$r(n_{1}, n_{2}) = \frac{1}{N_{1}N_{2}} \sum_{k_{1}k_{2}} H(k_{1}, k_{2}) R(k_{1}, k_{2}) W_{N_{1}}^{-k_{1}n_{1}} W_{N_{2}}^{-k_{2}n_{2}} \approx \frac{\alpha}{2\pi\sigma^{2}} e^{-\{(n_{1}+\delta_{1})^{2}+(n_{2}+\delta_{2})^{2}\}/2\sigma^{2}}$$
(7)

(iii) 相関ピークモデルのフィッティング

移動量 (δ_1, δ_2) は実数値であり,実際には,POC 関数のピーク座標はサンプリング格子の間に存在する. そこで,実際に計算された POC 関数の数値データに対して, α , δ_1 , δ_2 をパラメータとして,式(7)で表される相関ピークモデルをフィッティングすることで, ピクセル間に存在する相関ピークの位置をサプピクセル精度で推定する.

2.2 位相限定相関法に基づくサブピクセル動き
 推定

位相限定相関法に基づく動き推定は,基準画像

表 1 動き推定のパラメータ

Table 1	1 Motion	estimation	parameters
Table .	1/10/10/10	countration	parameters

ブロックサイズ	64×64 pixels	
窓関数	ハニング窓	
スペクトル重み付け	ガウシアン $(\sigma = \sqrt{0.5})$	
フィッティング手法	Newton 法	
フィッティング点数	5×5	
階層数	3	

 $I(n_1, n_2)$ 上の点pに対応する参照画像 $J(n_1, n_2)$ 上の 点qを対応点探索によって求めることで,平行移動量 $v_p(=q-p)$ を得る一連の処理である.今回の実験では, 文献[8], [11]で提案されているステレオ画像の対応点 探索を基本として,これを動き推定向けに実験的に最適 化した.表1に,動き推定で用いるパラメータを示す.

本論文で用いる位相限定相関法に基づく動き推定に おいては,高精度に映像中の動きを推定するために (i) ブロックマッチングと(ii) 階層探索を用いる[11]. 映像のフレーム間での画像変形は複雑であるが,局所 領域に注目すると平行移動とみなすことができる.そ こで,基準画像 *I*(*n*₁,*n*₂) と参照画像 *J*(*n*₁,*n*₂) との 間の動き推定にブロックマッチングを用いる.

また,映像中には様々な大きさの動きが存在するた め,局所領域のみに注目すると大きな動きに対応する ことができない.全探索に代表されるように,同一解 像度の画像で複数回のブロックマッチングを行うこと で大きな動きにも対応することができるが,計算コス トの面から現実的ではない.そこで,低解像度画像か ら順に移動量推定を行うことで,効率良く様々な動き に対応しながら,高精度に動きを推定することができ る階層探索を用いる.

3. 超解像デインタレーシング

本論文で提案する超解像デインタレーシングについ て述べる.

3.1 超解像の画像観測モデル

超解像処理を行うために,まず,観測された低解 像度画像ともとの高解像度画像との間の観測モデル を定式化する必要がある.一般的には,高解像度画 像 $x(N_{H1} \times N_{H2}$ ピクセル)に,動き,ぼけ,エイ リアシング,ノイズなどが加わり,低解像度画像 y_k ($N_{L1} \times N_{L2}$ ピクセル)が観測されるモデルを扱う (図1(a)).ここで,kは観測のインデックスであり, $k \in \{1, 2, \dots, P\}$ である.すなわち,合計でP回の

図 1 画像観測モデル (a) 超解像, (b) デインタレーシング, (c) (b) の周波数領域表現 Fig.1 Image observation models: (a) super-resolution, (b) de-interlacing, and (c) frequency domain representation of (b).

観測を行うものとする.以下では,x, y_k をそれぞれ $N_{H1}N_{H2} \times 1$, $N_{L1}N_{L2} \times 1$ の列ベクトルとして扱う.

このとき、次の三つの画像変換過程を考える。

 位置ずれ過程 M_k(N_{H1}N_{H2}×N_{H1}N_{H2}行列): 撮影装置と観測画像の相対的な動きや撮影対象の動き による画素の移動を表すものとする.

 ぼけ過程 B_k (N_{H1}N_{H2} × N_{H1}N_{H2} 行列): 光
 学システムなどによって生じる画像のぼけを表すもの
 とする.

ダウンサンプリング過程 *D_k*(*N_{L1}N_{L2} × N_{H1}N_{H2}*行列):高解像度画像をダウンサンプリングして低解像度画像を生成する過程を表すものとする.

上述の画像変換過程に加えて, $N_{L1}N_{L2} \times 1$ ベクト ル ν_k を平均0のガウス性観測ノイズとして観測モデ ルを定式化すると,次式となる.

$$\boldsymbol{y}_k = \boldsymbol{D}_k \boldsymbol{B}_k \boldsymbol{M}_k \boldsymbol{x} + \boldsymbol{\nu}_k \tag{8}$$

超解像処理は,式(8)の高解像度画像 x を求める処 理であり,次式に示すような最小化問題として扱うこ とができる.

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \sum_{k} ||\boldsymbol{D}_{k}\boldsymbol{B}_{k}\boldsymbol{M}_{k}\boldsymbol{x} - \boldsymbol{y}_{k}||^{2}$$
(9)

一般に、上式に、正則化項を加えることで、安定した
 xの推定を実現することが多い[5].

3.2 デインタレーシングの画像観測モデル

次に,デインタレーシングを超解像の画像観測モデ ルに当てはめてみる.インタレース画像はプログレッ シブ画像を垂直方向に1/2ダウンサンプリングした画 像として扱うことができる.そのため,デインタレーシ ングは,インタレース画像(低解像度画像)を垂直方向 へ2倍に拡大することでプログレッシブ画像(高解像 度画像)を生成する超解像処理と考えることができる.

本論文では,画像を局所領域に分割して,画像プ ロック単位で超解像処理を行う.プログレッシブ画像 プロック $x(2N_1 \times N_2$ ピクセル)に対応するインタ レース画像ブロック $y_k(N_1 \times N_2$ ピクセル)の観測 モデルは,式(8)を次のように簡略化して得られる.

*D_k*は,垂直方向のみのダウンサンプリングである.

 局所領域に注目した場合,隣接フレーム間の画 像変形は平行移動で表されると仮定し,位置ずれ過程 M_kは平行移動過程 S_kとして単純化する.

インタレース映像からプログレッシブ映像への
 変換であるため,光学システムで生じるぼけを表して
 いるぼけ過程 B_k は考慮しない.

以上の簡略化により,画像ブロック y_k の観測モデル は,x, y_k をベクトル化し,次式で表される.

$$\boldsymbol{y}_k = \boldsymbol{D}_k \boldsymbol{S}_k \boldsymbol{x} \tag{10}$$

ここで, $x \operatorname{tl} 2N_1N_2 \times 1$ ベクトル, $y_k \operatorname{tl} N_1N_2 \times 1$ ベ クトル, $D_k \operatorname{tl} N_1N_2 \times 2N_1N_2$ 行列, $S_k \operatorname{tl} 2N_1N_2 \times 2N_1N_2$ 行列である. ノイズ項 ν_k は,本論文において特に考慮しないため除く.

インタレース映像は,奇数フィールドと偶数フィール ドでサンプリング位置が異なるが,位置ずれ過程 S_k に サンプリング位置のずれを含めることで,奇数フィール ドと偶数フィールドによらず垂直方向のダウンサンプ リング過程 D_k を D として共通化することができる.

$$y_k = DS'_k x \tag{11}$$

ここで, S'_kは, サンプリング位置のずれを含めた平行

移動過程を表す.平行移動過程 S'_k は,二次元の平行 移動パラメータ $(\delta_{1,k}, \delta_{2,k})$ によって表されるディリク レ核を用いた補間行列である.なお, $(\delta_{1,k}, \delta_{2,k})$ は低 解像度のインタレース映像における平行移動量として 扱う.図1(b) に,以上の簡略化によるデインタレー シングの観測モデルを示す.

すなわち, 超解像処理によるデインタレーシングは, 式 (11)のモデルに基づいて生成された P 個の観測画 像 (インタレース画像)から,プログレッシブ画像 xを求める問題として定式化できる.式(11)を直接解 くと,その計算量は $O(N_1^3N_2^3)$ になる.一方,この超 解像処理は,周波数領域で処理することで,計算量を $O(N_1N_2 \log N_1N_2)$ に抑えることができる.以下では, このような観点から効率化した周波数領域超解像アル ゴリズムを導出する.まず,x, y_k の画像サイズに対 する 2D DFT の行列をそれぞれ F_x , F_y とし,次式 で与える.

ここで, \otimes は,クロネッカー積を表す.x, y_k の2D DFT をベクトル化したものをそれぞれX, Y_k とす ると,式(11)より,以下の式が得られる.

$$Y_{k} = F_{y}y_{k} = F_{y}DF_{x}^{H}F_{x}S_{k}'F_{x}^{H}F_{x}x$$
$$= (F_{y}DF_{x}^{H})(F_{x}S_{k}'F_{x}^{H})(F_{x}x)$$
$$= \tilde{D}\tilde{S}_{k}X \qquad (12)$$

 F_x^H , F_y^H は, 2D 逆 DFT を表し, F_x , F_y を共役転 置し, それぞれ x, y_k の画像サイズで割ったものであ る. \tilde{D} は, ダウンサンプリング過程 D の周波数領域 表現であり, ダウンサンプリングによる原信号とエイ リアシング成分との合成を表す. \tilde{S}_k は, 平行移動過程 S'_k の周波数領域表現であり, 位相回転によるプログ レッシブ画像の平行移動操作に対応する. 図 1 (c) に, 周波数領域表現でのデインタレーシングの観測モデル を示す. (k_1, k_2) を, インタレース画像の 2D DFT の 周波数インデックス (ベクトル化後のインデックスは, $k_1 + k_2N_1$), (k_3, k_4) を, プログレッシブ画像の 2D DFT の周波数インデックス(ベクトル化後のインデッ クスは, $k_3 + k_42N_1$)とすると, \tilde{D} は, 以下のよう に表される.

$$\tilde{\boldsymbol{D}} = \frac{1}{2} \begin{bmatrix} \boldsymbol{I}_{N_1} | \boldsymbol{I}_{N_1} & & \\ & \boldsymbol{I}_{N_1} | \boldsymbol{I}_{N_1} & & \\ & & \ddots & \\ 0 & & & \boldsymbol{I}_{N_1} | \boldsymbol{I}_{N_1} \end{bmatrix}$$
(13)

 I_{N_1} は,大きさが $N_1 imes N_1$ の単位行列を表す. $(k_1 + k_2 N_1, k_3 + k_4 2 N_1)$ 要素は以下のように表される.

$$\tilde{D}(k_1 + k_2 N_1, k_3 + k_4 2 N_1)$$

$$= \begin{cases} \frac{1}{2} & k_3 = k_1 \text{かつ} k_4 = k_2 \text{のとき} \\ \frac{1}{2} & k_3 = k_1 + N_1 \text{かO} k_4 = k_2 \text{のとき} \\ 0 & \text{その他のとき} \end{cases}$$
(14)

また, \tilde{S}_k は,対角行列であり, \tilde{S}_k の $(k_3+k_42N_1,k_3+k_42N_1)$ 要素は以下のように表される.

$$\begin{split} \hat{S}_{k}(k_{3}+k_{4}2N_{1},k_{3}+k_{4}2N_{1}) &= s_{k,k_{3},k_{4}} \\ \\ & \begin{pmatrix} W_{2N_{1}}^{k_{3}2\delta_{1,k}}W_{N_{2}}^{k_{4}\delta_{2,k}} \\ & 0 \leq k_{3} < N_{1} \bigstar \Im \ 0 \leq k_{4} < \lceil N_{2}/2 \rceil \\ \\ & W_{2N_{1}}^{k_{3}2\delta_{1,k}}W_{N_{2}}^{(k_{4}-N_{2})\delta_{2,k}} \\ & 0 \leq k_{3} < N_{1} \bigstar \Im \ \lceil N_{2}/2 \rceil \leq k_{4} < N_{2} \\ \\ & W_{2N_{1}}^{(k_{3}-2N_{1})2\delta_{1,k}}W_{N_{2}}^{k_{4}\delta_{2,k}} \\ & N_{1} \leq k_{3} < 2N_{1} \bigstar \Im \ 0 \leq k_{4} < \lceil N_{2}/2 \rceil \\ \\ & W_{2N_{1}}^{(k_{3}-2N_{1})2\delta_{1,k}}W_{N_{2}}^{(k_{4}-N_{2})\delta_{2,k}} \\ & N_{1} \leq k_{3} < 2N_{1} \bigstar \Im \ \lceil N_{2}/2 \rceil \leq k_{4} < N_{2} \\ & N_{1} \leq k_{3} < 2N_{1} \bigstar \Im \ \lceil N_{2}/2 \rceil \leq k_{4} < N_{2} \end{split}$$

$$(15)$$

533

周波数インデックス $k_1 + k_2 N_1$ における観測式は式 (12) に,式 (14), (15) を代入して,以下の式で表される.

$$\begin{aligned} \mathbf{Y}_{k}(k_{1}+k_{2}N_{1}) \\ &= \frac{1}{2} \left[s_{k,k_{1},k_{2}} \ s_{k,k_{1}+N_{1},k_{2}} \right] \begin{bmatrix} \mathbf{X}(k_{1}+k_{2}2N_{1}) \\ \mathbf{X}(k_{1}+N_{1}+k_{2}2N_{1}) \end{bmatrix} \end{aligned}$$
(16)

上式は, X について, 二つの未知数 $X(k_1 + k_2 2N_1)$, $X(k_1 + N_1 + k_2 2N_1)$ があり,観測によって変化するの は,平行移動を表す s_{k,k_1,k_2} , s_{k,k_1+N_1,k_2} と,観測され る Y_k である.そのため, Y_k を二つ以上観測すれば,連 立方程式を立て, $X(k_1+k_2 2N_1)$, $X(k_1+N_1+k_2 2N_1)$ について解くことができる.観測枚数 Pが3枚以上 の場合には, X について最小二乗解を求める.これ を,すべての周波数インデックス(k_1,k_2)に対して行 う.このようにして求められた X の 2D 逆 DFT とし てプログレッシブ画像 x が求められる.

3.3 超解像デインタレーシング

本論文で提案するブロックベース超解像デインタ レーシングについて述べる.複数の低解像度画像から, 超解像を用いて高品質な高解像度画像を生成するため には,複数の低解像度画像間の移動量を正確に推定す る必要がある.具体的には,ブロックごとに,式(16) を X について解くことで高品質な高解像度画像を得 るが,その際に,ブロック間で垂直方向にサブピクセ ル単位の移動が存在する必要がある. しかし,動画像の局所領域には,画像間で水平方向 にしか動いていない領域やピクセル単位でしか動い ていない領域があり,これらの領域では,超解像処理 を行うことができない.そこで,超解像による画像拡 大と VT (Vertical Temporal)フィルタによる画像拡 大[1]を画像ブロック単位で,動き推定の結果により, 適応的に切り換えることを考える.ここで,VTフィ ルタとは,代表的な非動き補償型のデインタレーシン グ手法であり,垂直方向と時間方向の近傍画素値から 補間画素値を求める線形フィルタである.本論文では, 基準フィールドと前後1フィールドの合計3フィール ドを利用する標準的な VT フィルタを用いるものと する.

以下で提案アルゴリズムの詳細な処理手順を示す. 図 2 は,対応する概念図である.

処理手順

入力:

基準フィールド I_i から切り出した基準画像プロック f参照フィールド I_{i+j} $(j \in \{-2, -1, 1, 2\})$

出力:

高解像度画像ブロック *f* (*f* の高解像度化画像) ステップ 1:

基準画像ブロック f から各参照フィールドへの動き を,2.2 で述べた位相限定相関法 (POC) に基づいて 推定する.

ステップ2:

推定した動きに応じて,切出し位置をピクセル単位で

Fig. 2 Flow diagram of block-wise de-interlacing.

正規化し,各参照フィールド I_{i+j} ($j \in \{-2, -1, 1, 2\}$)から参照画像ブロック f_j を切り出す.また,基準画像ブロックfと各参照画像ブロック f_j との間のサブピクセル単位の動き(小数点以下の動き)を $(\delta_{1,j}, \delta_{2,j})$ とする.

ステップ 3:

 f_j $(j \in \{-2, -1, 1, 2\})$ が,超解像処理に利用できる参照画像ブロックであるかどうかを以下の基準に従って判断する.

切り出した参照画像ブロックが画像端をはみだしていない.

それぞれの参照画像ブロックの垂直方向の移動

 *δ*_{1,i} がサブピクセル単位である
 .

上記を満たす画像ブロックを超解像処理に利用でき る参照画像ブロックとする.次に,これらの参照画像 ブロックについて,それぞれの垂直方向の移動量を比 較し,その差があるしきい値以上になるような参照画 像ブロックの組合せを選択する.本論文ではしきい値 を 0.05 ピクセルとした.

ステップ 4:

ステップ3で参照画像ブロック f_j が一つでも選択 された場合は,基準画像ブロックと選択された参照画 像ブロック,更に,推定した移動量 $(\delta_{1,j}, \delta_{2,j})$ を用い て式(16)をXについて解き,超解像処理により高解 像度画像ブロックを生成する.参照画像ブロックがな い場合は,VTフィルタを用いて高解像度画像ブロッ クを生成する.得られた高解像度画像ブロックを \hat{f} と する.

基準フィールド I: 上のすべての画像ブロックについ て上記の処理を行い,得られた高解像度画像ブロック を統合することにより,高解像度画像フレーム(プロ グレッシブ画像)を得る.

4. 実験と考察

提案する超解像デインタレーシングの性能評価実験 について述べる.実験では,評価用標準動画像である Buildings along the Canal, Church, Group Game (垂直 480×水平720 ピクセル)を用いる.使用する 動画像はプログレッシブ映像であるため,動画像の冒 頭104フレームを用いてインタレース映像を作成する. インタレース映像は,もとのプログレッシブ映像の各 フレームについて,奇数フィールドと偶数フィールド をフレームごとに交互に間引くことで作成する.超解 像処理で前後2フレームを用いるため3フレーム目か ら 102 フレーム目までの 100 フレームについてデイン タレーシングを行い, もとのプログレッシブ映像のフ レームとの PSNR (Peak Signal to Noise Ratio) に よって評価する.なお, PSNRの評価対象領域は推定 した走査線のみとし, 画像端 32 ピクセルは除外する.

実験では,以下の四つの手法について比較する.

(A) 超解像 (POC)

提案手法である.POC 関数のパラメータは,実験 に基づいて得られた最適値を用いる.具体的には,プ ロックサイズを 64×64 ピクセル,ガウス型スペクト ル重み付け関数のパラメータ σ を $\sqrt{0.5}$,階層探索の 階層数を 3 とする (表 1).

(B) 超解像 (SSD)

提案手法において,動き推定に POC の代わりに SSD (Sum of Squared Differences) を用いる. 超解 像 (POC) と同様に,対応付けの結果に応じて超解像 と VT フィルタとを切り換える.ただし,対応付けの 結果が POC を用いた場合と同じではないため,必ず しも同じブロックが VT フィルタに切り換わるとは限 らないことに注意されたい.POCでは,画像端の信 号の不連続性を軽減するために,64×64 ピクセルの 画像に対してハニング窓を適用する.ハニング窓では 信号長の半分が半値幅となることから,画像ブロック の実効的な大きさは,画像ブロックの半分の大きさ, すなわち 32 × 32 ピクセル程度と考えてよい.そのた め, SSD では, 対応するブロックサイズを 32×32 ピ クセルとする.動き推定の精度向上のため,画像全体 に3×3次の低域フィルタを適用した上で, POC と同 様に階層探索(階層数3)を行う. 各階層では ±8 ピ クセルの領域を全探索する. 文献 [12] の手法を用いた サブピクセル動き推定を行う.

(C) VT フィルタ

前後2フィールドを用いて3フィールドでVTフィ ルタによる補間を行う.

(D) バイキュービック補間

バイキュービック補間を用いて走査線を補間する.

超解像処理において,処理ブロックの間隔は,イン タレース画像上で縦横それぞれ16ピクセルとする.ま た,超解像を行うブロックサイズを20×20ピクセル とし,処理後の40×20ピクセルの画像から,32×16 ピクセルを切り出して高解像度画像ブロックとする.

提案手法において,動き推定は,インタレース映像 を用いて行われる.このとき,垂直方向のエイリアシ ングの影響を受けて,移動量推定に誤差が入る可能性 がある.そこで,参考までに,エイリアシングの影響 を受けないもとのプログレッシブ映像を用いて動き推 定を行う場合と,提案手法とを比較することで,エイ リアシングが動き推定に与える影響を評価する.すな わち,次の実験を行う.

(A_{ref}) 超解像 (POC with progressive)

提案手法において,インタレース映像の代わりに, もとのプログレッシプ映像上で,POCを用いた動き 推定を行った場合の実験.

動画像の各フレームに対する PSNR を図 3 に,得 られた高解像度画像の一部を図 4 に示す. Buildings along the Canal と Group Game は,ほぼ水平方向 に動く映像であるため,それぞれの手法に対する実験 結果の傾向も似ている.フィールド間の移動量がそれ ほど大きくないため,動き補償を行わない VT フィル タでも比較的良好な結果が得られている.垂直方向の 移動がほぼないため,奇数フィールドと偶数フィール ドの間で見かけ上 0.5 ピクセルの移動が発生する.そ の結果,画像端付近以外のほぼすべてのブロックで超 解像が行われている.図 3 (a) 及び (c) より,提案手 法の PSNR が最も高いことが分かる.また,図 4 (a) 及び (c) からも提案手法を用いて生成された高解像度 画像の品質が良好であることが分かる.

Church は,ほぼ垂直方向にしか動かない映像であ るため,VTフィルタの結果が非常に悪くなる.超解 像を用いた手法は,20~40フレームあたりでVTフィ ルタを用いた結果と同程度まで落ちている.この領 域では,移動量がほぼ整数ピクセルであるため,超解 像が行われずにVTフィルタに切り換わっているため である.図3(b)より,ほぼすべてのフレームで提案 手法のPSNRが高くなっていることが分かる.また, 図4(b)より,提案手法を用いた場合は教会の斜めの 屋根を正確に生成できているのに対し,その他の手法 ではジャギーが目立っている.

以上の実験結果より,提案する超解像デインタレー シングを用いることで,インタレース映像からもとの プログレッシブ映像に近い高解像度な映像を生成する ことができることを示した.

エイリアシングを含む映像(インタレース映像)に 対する POC に基づく動き推定の精度について述べる. 図 3 より, どの動画像においても,プログレッシブ 映像を用いて動きを求めた場合と比較し,POC に基 づく提案手法は,PSNR が 2~3 dB 程度低下してい る.一方で,SSD を用いて動き推定を行った場合は,

- 図3 実験結果 (PSNR [dB]): (a) Buildings along the Canal, (b) Church, (c) Group Game
- Fig. 3 Experimental results (PSNR [dB]): (a) Buildings along the Canal, (b) Church and (c) Group Game.

Super-resolution (SSD) Super-resolution (POC)

Buildings along the Canal

Super-resolution (SSD) Super-resolution (POC)

Church

(b)

(a)

Super-resolution (SSD) Super-resolution (POC)

 $Group \ Game$

- (c) 図 4 実験結果:(a) Buildings along the Canal,(b) Church,(c) Group Game, 左側:右側の黒枠部拡大表示
- Fig. 4 Experimental result: (a) *Buildings along the Canal*, (b) *Church*, (c) *Group Game*, Left-hand side: boxed region of the right hand image.

表 2 1回のマッチングに要する演算量

PSNR が 4~5dB 程度低下している.以上のように, インタレース映像に対する POC に基づく動き推定の 有効性を示した.文献[9]では,ステレオ画像(プロ グレッシブ画像)の対応付けについて POC が SSD よ りも高精度であることを示している.このように,プ ログレッシブ画像においても,インタレース画像のよ うなエイリアシングを含む映像においても POC が有 効であるのは,POC 自身が高精度であるだけではな く,窓関数の適用,スペクトル重み付け,相関ピーク モデルのフィッティングなどの高精度化手法が多様な 画像に対して効果的であり,ロバスト性が高いためと 考えられる.

POC 及び SSD の演算量について考察する.サブピ クセル精度で動きを推定するために必要となるフィッ ティングの演算量は対応付けと比べて無視できるほ ど少ないため,ここでは,1回のマッチングにおける 演算量を評価する.表2に,POC及びSSDの1回 のマッチングに要する演算量を示す.表中の "Add.", "Mul.", "Div.", "SQRT", "2D FFT" は, それぞ れ,1回のマッチングに必要となる加算,乗算,除算, 開平算,二次元高速フーリエ変換の回数である.POC の場合,1回のマッチングの中で3回のFFTの計算 を必要とする.ここで,1回の複素数乗算は4回の実 数乗算と2回の実数加算として数え, 複素数加算は2 回の実数加算として数えるとする.基数2のFFTの 場合, 2N log₂ N 回の乗算及び 3N log₂ N 回の加算を 必要とする.これより, POC で要する 2D FFT の演 算は、実数加算が $3 \times 3 \cdot 64^2 \log_2(64^2) = 442,368 回$, 実数乗算が $3 \times 2 \cdot 64^2 \log_2(64^2) = 294,912$ 回である. 以上より, POC と SSD の演算量は同程度である.実 際には,基数4や基数8のFFTを用いることでPOC の演算量を減らすことが可能である.また,逆数平方 根を使用することで除算と開平算を一つの演算にまと めることも可能である.

5. む す び

本論文では、位相限定相関法 (Phase-Only Correlation: POC) を用いた超解像デインタレーシング手 法を提案し、性能評価実験を通して、その有効性を示 した.デインタレーシングを,垂直方向に 1/2 ダウ ンサンプリングされた映像から 2 倍拡大した映像を 再構成する超解像処理として扱うことで,従来よりも 高品質なプログレッシブ映像を生成することが可能で ある.今後は,Adaptive-Recursive (AR) deinterlacing, Generalized Sampling Theorem deinterlacing with Selective Median (GSTSM), Motion Compensated Median filtering (MCmed), Time-Recursive (TR) deinterlacing, Motion Compensated VT filtering (mcVT) などの動き補償型のデインタレーシン グ[1] と提案手法の性能比較を行う必要がある.

献

文

- G. de Haan and E.B. Bellers, "Deinterlacing An overview," Proc. IEEE, vol.86, no.9, pp.1839–1857, 1998.
- [2] S. Borman and R. Stevenson, "Spatial resolution enhancement of low-resolution image sequences — A comprehensive review with directions for future research," Tech. Rep., University of Notre Dame, 1998.
- [3] S. Chaudhuri, Super-Resolution Imaging, Kluwer Academic Publishers, 2001.
- [4] S.C. Park, M.K. Park, and M.G. Kang, "Superresolution image reconstruction: A technical overview," IEEE Signal Process. Mag., vol.20, no.3, pp.21–36, 2003.
- [5] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, "Fast and robust multi-frame super-resolution," IEEE Trans. Image Process., vol.13, no.10, pp.1327– 1344, 2004.
- [6] G. Chantas, N. Galatsanos, and N. Woods, "Superresolution based on fast registration and maximum a posteriori reconstruction," IEEE Trans. Image Process., vol.16, no.7, p.1821, 2007.
- [7] C.D. Kuglin and D.C. Hines, "The phase correlation image alignment method," Proc. Int. Conf. on Cybernetics and Society, pp.163–165, 1975.
- [8] K. Takita, M.A. Muquit, T. Aoki, and T. Higuchi, "A sub-pixel correspondence search technique for computer vision applications," IEICE Trans. Fundamentals., vol.E87-A, no.8, pp.1913–1923, Aug. 2004.
- [9] 青木孝文, 伊藤康一, 柴原琢磨, 長嶋 聖, "位相限定 相関法に基づく高精度マシンビジョン—ピクセル分解能 の壁を越える画像センシング技術を目指して", IEICE Fundamentals Review, vol.1, no.1, pp.30-40, 2007.
- [10] 青木孝文,伊藤康一,本間尚文,"位相情報に基づく画像 マッチング技術とその応用展開—3D ビジョンからバイ オメトリクスまで",信学誌,vol.90, no.8, pp.680-685, Aug. 2007.
- [11] M.A. Muquit, T. Shibahara, and T. Aoki, "A high-accuracy passive 3D measurement system using phase-based image matching," IEICE Trans. Fundamentals, vol.E89-A, no.3, pp.686–697, March 2006.

 [12] 清水雅夫,奥富正敏,"領域ペースマッチングのための2 次元同時サブピクセル推定法",信学論(D-II),vol.J87-D-II, no.2, pp.554–564, Feb. 2004.
 (平成20年10月31日受付,21年3月21日再受付)

沼 徳仁

2004 東北大・工・情報卒.2006 同大大 学院情報科学研究科修士課程了.現在,同 大学院博士課程在学中.画像・映像処理に 関する研究に従事.

伊藤 康一 (正員)

2000 東北大・工・電子卒.2005 同大大 学院情報科学研究科博士課程了.同年同 大学院情報科学研究科助手,2007 同助教. 2004~2005 日本学術振興会特別研究員. 現在に至る.画像処理及びバイオメトリク スに関する研究に従事.IEEE,情報処理

学会各会員.博士(情報科学).

青木 孝文 (正員)

1988 東北大・工・電子卒.1992 同大大 学院工学研究科博士課程了.同年同大学・ 工・助手,1994 同大学院情報科学研究科 助手,1996 同助教授,2002 同教授,現在 に至る.超高速ディジタル計算の理論,画 像センシング,映像信号処理,バイオメト

リクス, VLSI 設計技術, 分子コンピューティングに関する研 究に従事.英国電気学会フレミング賞及びマウントバッテン賞 ほかを受賞.IEEEE, 計測自動制御学会, 情報処理学会各会員. 博士(工学).

近藤 敏志 (正員)

1990 阪府大・工卒.1992 同大大学院工 学研究科修士課程了.同年松下電器産業 (株)(現,パナソニック(株))に入社.動 画像符号化及び動画像信号処理に関する研 究開発に従事.IEEE 1394 Trade Association における AV/C コマンドセットや

MPEG/VCEG における MPEG-4 Advanced Video Coding の国際標準化活動にも参画.工博.