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A Shortest Path Search Algorithm Using an Excitable Digital
Reaction-Diffusion System

Koichi ITO†a), Masahiko HIRATSUKA††, Takafumi AOKI†, Members, and Tatsuo HIGUCHI†††, Fellow

SUMMARY This paper presents a shortest path search algorithm us-
ing a model of excitable reaction-diffusion dynamics. In our previous
work, we have proposed a framework of Digital Reaction-Diffusion System
(DRDS)—a model of a discrete-time discrete-space reaction-diffusion sys-
tem useful for nonlinear signal processing tasks. In this paper, we design
a special DRDS, called an “excitable DRDS,” which emulates excitable
reaction-diffusion dynamics and produces traveling waves. We also demon-
strate an application of the excitable DRDS to the shortest path search prob-
lem defined on two-dimensional (2-D) space with arbitrary boundary con-
ditions.
key words: reaction-diffusion system, nonlinear dynamics, shortest path
search, excitable dynamics

1. Introduction

Living organisms can create a remarkable variety of struc-
tures to realize intelligent functions. In embryology, the de-
velopment of patterns and forms is sometimes called Mor-
phogenesis. In 1952, Alan Turing suggested that a system of
chemical substances, called morphogens, reacting together
and diffusing through a tissue, is adequate to account for the
main phenomena of morphogenesis [1]. Recently, model-
based studies of morphogenesis employing computer simu-
lations have begun to attract much attention in mathematical
biology [2], [3].

From an engineering viewpoint, the insights into
morphogenesis provide important concepts for devising a
new class of intelligent signal processing functions in-
spired by biological pattern formation phenomena [4],
[5]. From this viewpoint, we have proposed a framework
of Digital Reaction-Diffusion System (DRDS)—a discrete-
time discrete-space reaction-diffusion dynamical system—
for designing signal processing models exhibiting active
pattern/texture formation capability. In our previous papers
[6], [7], some applications of DRDS to biological texture
generation and fingerprint image enhancement/restoration
have already been discussed.
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The DRDS can simulate a variety of reaction-diffusion
dynamics by changing its nonlinear reaction kinetics. This
paper describes the design of an excitable DRDS based on
FitzHugh-Nagumo-type dynamics [2]; the designed DRDS
creates excitable traveling waves exhibiting the following
characteristics: (i) the waves propagate with a constant ve-
locity, and (ii) they vanish in collisions with other waves
without any other interaction. The goal of this paper is
to propose an algorithm for shortest path search in two-
dimensional (2-D) space using the excitable DRDS. We
first define a 2-D map (specifying collision-free space and
blocked space) as a boundary condition for the excitable
DRDS, and initiate a traveling wave at the starting point
in the map. The traveling wave propagates through the
map splitting into different groups of wavefronts at branch
points. A snapshot of wavefronts represents an equidistant
surface measured from the starting point. By tracing back
the equidistant surfaces of different time steps, we can find
the shortest path from the starting point to any specified des-
tinations.

So far, there are some papers discussing the mecha-
nism of finding the collision-free shortest path in a 2-D
map using excitable reaction-diffusion dynamics. In the pa-
pers [8]–[13], the real chemical reaction, called Belousov-
Zhabotinsky (BZ) reaction, is employed as an excitable
medium to generate traveling waves for path finding. The
use of real chemical media for performing practical com-
puting tasks has the weakness of limited stability in its op-
eration. Also, the size and complexity of maps that can be
handled in chemical computers may be limited. The other
related papers basically employ continuous-time models of
excitable dynamics, including a PDE (Partial Differential
Equation) model [14] and circuit models [11], [15]. All
these works focus on the mechanism of generating equidis-
tant surfaces for the given map by using excitable chemical
waves and describe only simple examples of small maps. On
the other hand, this paper describes a concrete algorithm for
shortest path search (including the process of tracing back
the equidistant surfaces). The proposed algorithm is based
on the discrete-time discrete-space model of DRDS, which
is easily implemented in digital computers, and can be ap-
plied to arbitrary maps of practical size and complexity.

This paper is organized as follows: Sect. 2 defines an
excitable DRDS, and presents some examples of wave prop-
agation in the excitable DRDS. Section 3 describes a short-
est path search algorithm using the excitable DRDS. Sec-
tion 4 demonstrates some experiments for the shortest path
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finding. Section 5 ends with some concluding remarks.

2. Excitable Digital Reaction-Diffusion System

A Digital Reaction-Diffusion System (DRDS)—a model of
a discrete-time discrete-space reaction-diffusion dynamical
system—can be naturally derived from the original reaction-
diffusion system defined in continuous space and time (see
[6] for basic mathematical discussions). The general M-
morphogen DRDS can be obtained as

x(n0+1, n1, n2)

= x(n0, n1, n2)+R(x(n0, n1, n2))

+D(l ∗ x)(n0, n1, n2), (1)

where n0 is a time index, n1 and n2 are spatial indices, and

x = [x1, x2, · · · , xM]T ,

xi : concentration of the i-th morphogen,

R = T0 R̃ = [R1(x),R2(x), · · · ,RM(x)]T ,

Ri(x) : nonlinear reaction kinetics for the i-th

morphogen,

T0 : time sampling interval,

D = diag[D1,D2, · · · ,DM],

diag : diagonal matrix,

Di : diffusion coefficient of the i-th morphogen,

l(n1, n2)

=



1
T 2

1
(n1, n2) = (−1, 0), (1, 0)

1
T 2

2
(n1, n2) = (0,−1), (0, 1)

−2( 1
T 2

1
+ 1

T 2
2
) (n1, n2) = (0, 0)

0 otherwise,

T1, T2 : space sampling intervals.

The operator ∗ in Eq. (1) denotes the spatial convolution de-
fined as

(l ∗ x)(n0, n1, n2)

=



(l ∗ x1)(n0, n1, n2)
(l ∗ x2)(n0, n1, n2)

...
(l ∗ xM)(n0, n1, n2)



=



1∑
p1=−1

1∑
p2=−1

l(p1, p2)x1(n0, n1 − p1, n2 − p2)

1∑
p1=−1

1∑
p2=−1

l(p1, p2)x2(n0, n1 − p1, n2 − p2)

...
1∑

p1=−1

1∑
p2=−1

l(p1, p2)xM(n0, n1 − p1, n2 − p2)



.

The DRDS described by Eq. (1) can be understood as a

Fig. 1 Computational flow of DRDS with two morphogens (M = 2).

three-dimensional nonlinear digital filter. Figure 1 illus-
trates the computational flow of DRDS with two mor-
phogens (M = 2). We first store an initial (input) image
in x1(0, n1, n2) at time 0. After computing the dynamics for
n0 steps, we can obtain the output image from x1(n0, n1, n2)
at time n0.

DRDS can simulate various reaction-diffusion dynam-
ics by changing the nonlinear reaction kinetics R and its
parameters. In this paper, we use the FitzHugh-Nagumo
(FHN) model, which is one of the most widely studied ex-
citable models [2]. The two-morphogen FHN-based DRDS,
called the excitable DRDS, is defined as follows:[

x1(n0+1, n1, n2)
x2(n0+1, n1, n2)

]
=

[
x1(n0, n1, n2)
x2(n0, n1, n2)

]

+

[
R1(x1(n0, n1, n2), x2(n0, n1, n2))
R2(x1(n0, n1, n2), x2(n0, n1, n2))

]

+

[
D1(l ∗ x1)(n0, n1, n2)
D2(l ∗ x2)(n0, n1, n2)

]
, (2)

where

R1(x1, x2) = T0

{
1
k1
{x1{x1−k2}{1−x1}−x2}

}
,

R2(x1, x2) = T0 {x1 − k3x2} .
In this paper, we employ the parameter set: k1 = 10−3, k2 =

10−6, k3 = 0.1, D1 = 2, D2 = 0, T0 = 10−3, and T1 = T2 =

1.
The excitable DRDS exhibits the characteristic behav-

ior of excitable dynamics and generates traveling waves de-
pending on the initial condition. Assume that the initial con-
dition is given by x1(0, n1, n2) = x2(0, n1, n2) = 0 except for
the starting point (nS

1 , n
S
2 ). When we give a stimulus above

the threshold (∼ 0.9 for the above parameter set) at the start-
ing point, for example, x1(0, nS

1 , n
S
2 ) = 0.9, a traveling wave

is initiated from the starting point and propagates with a con-
stant velocity as the time step n0 increases.

Consider an excitable DRDS of size 128 × 128, where
n1 and n2 are defined as 0 ≤ n1 ≤ 127 and 0 ≤ n2 ≤ 127.
Figure 2 shows the wave propagation observed in the snap-
shots of the first morphogen x1(n0, n1, n2). In this example,
we first give initial stimuli as x1(0, 32, 64) = x1(0, 96, 64) =
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Fig. 2 Wave propagation in the 2-D excitable DRDS: (a) initial condition, (b)–(h) snapshots of wave
propagation.

Fig. 3 Time step n0 when the traveling wave starting at the point (0, 0)
arrives at the point (n1, 0).

0.9 (Fig. 2(a)). The traveling waves spread in a circular pat-
tern and vanish in collisions with another wave as shown in
Figs. 2(b)–(h).

In the above example, we can observe two important
characteristics of excitable waves: (i) the waves propagate
with a constant velocity and (ii) they vanish in collisions
with other waves. As for the item (i) above, Fig. 3 shows the
arrival time (in time step n0) of a traveling wave as a func-
tion of the distance (in pixels) from the starting point. Note
that the arrival time of a traveling wave is defined as the
time when the concentration x1 exceeds the threshold value
0.9 for the first time. We can observe that the traveling wave
propagates with a constant velocity of 0.11 pixels per a unit
time step. These features suggest a unique algorithm for the
shortest path search problem as described in Ref. [8], where
snapshots of real propagating chemical waves are consid-
ered as a collection of equidistant surfaces and are useful
for finding the shortest path from the starting point to any
specified points in 2-D space.

3. Shortest Path Search Algorithm

The original experiment of the shortest path search using
actual chemical waves is found in Ref. [8], where the op-
timal pathways were determined by the collection of time-
lapse position information on actual chemical waves prop-
agating through 2-D mazes prepared with the Belousov-
Zhabotinsky (BZ) reaction. Inspired by the natural comput-
ing using chemical wave propagation, we propose a shortest
path search algorithm using the excitable DRDS designed
in the above section. The proposed algorithm employs the
excitable DRDS for wavefront generation and performs the
traceback of traveling wavefronts to find the shortest paths.

Figures 4 (a)–(c) show the wave propagation in a 2-D
excitable DRDS of the size 128 × 128 pixels. Note that we
employ the boundary condition defined by obstacles in the
map, where we set fixed concentrations x1 = 0 and x2 = 0
for obstacle locations. In Fig. 4(d), 29 snapshots of wave-
fronts of the first morphogen x1 are superimposed at every
100-step intervals to form a composite image. Each wave-
front represents a set of equidistant locations measured from
the starting point, and hence we can derive the shortest path
by tracing back the history of wavefront position from the
goal to the starting point.

The proposed algorithm consists of two operations:
Forward Operation and Backward Operation. Forward Op-
eration is to generate a traveling wave in the excitable DRDS
and record snapshots of equidistant wavefronts with specific
time intervals. Backward Operation, on the other hand, is to
trace back the wavefronts from the goal to the starting point
to find the shortest pathways. We can obtain the shortest
path by connecting every pair of two points on the adjacent
equidistant wavefronts with the shortest distance. Figures 5
and 6 show the detailed algorithms for Forward and Back-
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Fig. 4 Wave propagation in the 2-D excitable DRDS with obstacles appearing as white parts: (a)–(c)
the snapshots of wave propagation in x1(n0, n1, n2), (d) superposition of traveling waves in x1(n0, n1, n2)
taken every 100 steps.

procedure Forward Operation
Input

a starting point (nS
1 , n

S
2 ), a goal (nG

1 , n
G
2 ), a map (with obstacle information);

Output
W(n0): a list of points (n1, n2) in 2-D space at which the value of x1(n0, n1, n2) is higher than a specific

threshold value 0.9 (that is, W(n0) stores the list of points at which the traveling wave exists),
nG

0 : the time step when the traveling wave arrives at the goal (nG
1 , n

G
2 );

1. begin
2. n0 ← 0; { Initialize the time step }
3. x1(0, n1, n2)← 0 for all the points (n1, n2);
4. x2(0, n1, n2)← 0 for all the points (n1, n2);
5. x1(0, nS

1 , n
S
2 )← a constant (> 0.9);

6. W(0)← {(nS
1 , n

S
2 )};

7. repeat
8. Compute the excitable DRDS (Eq. (2)) for one step assuming the boundary condition defined by the map,

and derive x1(n0 + 1, n1, n2) and x2(n0 + 1, n1, n2);
9. Store the points of the wavefronts into W(n0+1) (that is, the points at which the value of x1(n0+1, n1, n2)

is higher than the threshold value 0.9);
10. n0 ← n0 + 1
11. until the traveling wave arrives at (nG

1 , n
G
2 );

12. nG
0 ← n0

13. end.

Fig. 5 Algorithm for Forward Operation.

ward Operations, respectively.

3.1 Forward Operation

We illustrate here the detailed algorithm for Forward Op-
eration. The inputs of Forward Operation are a starting
point (nS

1 , n
S
2 ), a goal (i.e., a destination point) (nG

1 , n
G
2 ) and a

map with obstacle information. The map defines the obsta-
cle positions as the boundary condition of zero morphogen
concentrations (x1 = x2 = 0) to block the wave propaga-
tion into obstacle regions. The outputs of Forward Opera-
tion are W(n0) and nG

0 , where W(n0) is a list of pixel po-
sitions (n1, n2) at which the value of the first morphogen
x1(n0, n1, n2) is higher than a threshold value 0.9. In other
words, W(n0) stores, for every time step n0, the list of po-
sitions at which the traveling wave exists. The other output
nG

0 is the time step when the traveling wave arrives at the
goal (nG

1 , n
G
2 ). The total process of Forward Operation con-

sists of two sections: (i) initial setting and (ii) computation
of excitable DRDS.

(i) Initial Setting (lines 2–6)
First, the time step n0 is initialized to 0. For all the posi-

tions (n1, n2) except for the starting point (nS
1 , n

S
2 ), the initial

condition is given by x1(0, n1, n2) = x2(0, n1, n2) = 0. At
the starting point (nS

1 , n
S
2 ), the initial condition is given by

x1(0, nS
1 , n

S
2 ) > 0.9 (0.9: threshold) and x2(0, nS

1 , n
S
2 ) = 0,

which initiates a traveling wave from the starting point.
W(0) stores a list of pixel positions (n1, n2) at which the ini-
tial value of the first morphogen x1(0, n1, n2) is higher than
the threshold value 0.9. Hence, W(0) stores only the starting
position (nS

1 , n
S
2 ) at first.

(ii) Computation of Excitable DRDS (lines 7–12)
In this step, we compute the excitable DRDS (Eq. (2))

for one step assuming the boundary condition defined by
the map and derive the updated values x1(n0 + 1, n1, n2)
and x2(n0 + 1, n1, n2). Also, the pixel positions (n1, n2) of
the wavefronts at which x1(n0 + 1, n1, n2) > 0.9 are stored
into W(n0 + 1). Until the traveling wave arrives at the goal
(nG

1 , n
G
2 ), we repeat the same task by incrementing n0. When

the traveling wave arrives at the goal (nG
1 , n

G
2 ), the time step
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procedure Backward Operation
Input

(nS
1 , n

S
2 ), (nG

1 , n
G
2 ), W(n0), nG

0 ,
∆: a resolution of the time step interval for Backward Operation (∆ = 4 in our experiments);

Output
Paths: a list of points (with their time index) on the shortest path from (nG

0 , n
G
1 , n

G
2 ) to (0, nS

1 , n
S
2 );

1. begin
2. Search←< (nG

0 , n
G
1 , n

G
2 ) >;

3. Paths← Backtrace(Search)
4. end.

function Backtrace(Search)

1. begin
2. (nb

0, n
b
1, n

b
2)← the last element of Search;

3. if nb
0 − ∆ ≤ 0 then

4. Search← append{Search, < (0, nS
1 , n

S
2 ) >};

5. return Search
6. else
7. begin
8. C ← get the points in W(nb

0 − ∆) that have the shortest distance from (nb
1, n

b
2);

9. C ← BranchDetection(C);
10. Search← ⋃

(nc
1 ,n

c
2)∈C

Backtrace(append{Search, < (nb
0 − ∆, nc

1, n
c
2) >});

11. return Search
12. end
13. end.

function BranchDetection(C)

1. begin
2. C′ ← get the points in W(nb

0 − 2∆) that have the shortest distance from each point in C (see Fig. 7);
3. Calculate the distance between the two (or more) points in C′;
4. if the calculated distance is less than ∆ then
5. Replace the points in C with their middle position;
6. return C
7. end.

Fig. 6 Algorithm for Backward Operation.

is recorded in nG
0 .

3.2 Backward Operation

We describe here the detailed algorithm for Backward Op-
eration. The inputs for Backward Operation are the starting
point (nS

1 , n
S
2 ), the goal (nG

1 , n
G
2 ), wavefront records W(n0),

the arrival time at the goal nG
0 and ∆ that defines the reso-

lution of time step interval for Backward Operation. Back-
ward Operation uses the set of wavefront records W(nG

0 ),
W(nG

0 − ∆), W(nG
0 − 2∆), W(nG

0 − 3∆), W(nG
0 − 4∆), · · · to

trace the shortest path recursively from the goal to the start-
ing point. We use ∆ = 4 in our experiments. The outputs of
Backward Operation is Paths—a list of points (with time in-
dex) on the shortest path from (nG

0 , n
G
1 , n

G
2 ) to (0, nS

1 , n
S
2 ). The

total process of Backward Operation consists of three sec-
tions: (i) initial setting, (ii) Backtrace, and (iii) BranchDe-
tection.
(i) Initial Setting

The search list Search is initialized to (nG
0 , n

G
1 , n

G
2 ) as a

possible shortest path candidate. Backtrace procedure de-
scribed below is then started with the search list Search.

(ii) Backtrace Procedure
In this step, we find the point on the shortest path by

tracing back the wavefront from the goal to the starting
point. First, we get a point (nb

0, n
b
1, n

b
2) from the last ele-

ment of the search list Search. In the case when nb
0 − ∆ ≤ 0,

we add (0, nS
1 , n

S
2 ) (i.e., the starting point) to the search list

Search and return Search. In other cases (i.e., nb
0 − ∆ > 0),

we load W(nb
0−∆), the set of wavefront points at time nb

0−∆,
and find the set of points C(⊆ W(nb

0 − ∆)) having the short-
est distance from (nb

1, n
b
2) in 2-D space. To select the points

to be stored in C, we need to perform (iii) BranchDetection
procedure described in the next paragraph. There is a pos-
sibility that the shortest path has multiple branches at time
nb

0 − ∆ and, in such a case, we store multiple points into C.
We add each point (nb

1, n
b
2) in C with its time index nb

0 − ∆
to the search list Search, and perform Backtrace procedure.
The Backtrace procedure is performed recursively until the
time step nb

0 − ∆ becomes less than or equal to 0 (in other
words, the search point arrives at the starting point).
(iii) BranchDetection Procedure

There is a possibility that C (the set of wavefront points
that are closest to (nb

1, n
b
2)) contains multiple points, i.e.,
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Fig. 7 Branch detection: (a) detection of multiple candidate points, and
(b) branch detection using W(nb

0 − 2∆).

|C| ≥ 2. In such a case, we need to check whether the
points in C are true branches or not. BranchDetection proce-
dure further traces the wavefront backward to verify whether
the set of points in C represent appropriate branches on the
shortest pathways or not. For every point in C, we first find
the points in W(nb

0−2∆) that have the shortest distance from
the point and store the detected points in C′. This process
is schematically illustrated in Fig. 7. We calculate the dis-
tance between the two points in C′ and classify the points in
C′ into groups based on the calculated distances. If the dis-
tance between the two points in C′ is less than a threshold
value (4 pixels in our experiments), these points are consid-
ered to be in the same group (i.e., in the same branch). We
can then classify the points in C into groups according to
the grouping for C′. To reduce computational complexity,
we replace the points in C belonging to the same group with
their middle position. The size of C directly corresponds to
the number of branches at time nb

0 − ∆. If there exists mul-
tiple groups in C, we can consider that the shortest path is
divided into multiple pathways.

Backward Operation mentioned above can find all the
possible shortest paths from the starting point to the given
goal.

We can briefly confirm that the proposed algorithm can
find the shortest path from the starting point (nS

1 , n
S
2 ) to the

goal (nG
1 , n

G
2 ) as follows:

• Forward Operation computes the equidistant surfaces
from the starting point for all the time steps n0 (0 ≤
n0 ≤ nG

0 ). When Forward Operation terminates, the
equidistant surface (at time nG

0 ) arrives at the goal.
• When we start Backward Operation, clearly the short-

est path from the goal to the equidistant surface at time
nG

0 is obtained (since the goal is on the equidistant sur-
face).

• After the first iteration of Backward Operation (i.e., af-
ter the first call of Backtrace function), the shortest path
from the goal to the equidistant surface at time nG

0 − ∆
is obtained, since the Backtrace function is designed to
find the point (on the equidistant surface at time nG

0 −∆)
having minimum distance from the goal.

• Similarly, after the second call of Backtrace function,
the shortest path from the goal to the equidistant sur-

face at time nG
0 − 2∆ is obtained.

• This process is repeated until the Backward Operation
finds the shortest path from the goal to the equidistant
surface at time 0. Note that the equidistant surface at
time 0 is equivalent to the starting point, and hence the
shortest path from the goal to the starting point is ob-
tained when finishing Backward Operation.

4. Experiments

This section presents some experiments of shortest path
search using the proposed algorithm under three different
conditions: (i) 2-D free space, (ii) map with symmetric ob-
stacles, and (iii) maps with complicated obstacles.

In our proposed algorithm, the system parameters k1,
k2, k3, D1, D2, T0, T1, T2 and ∆ are adjusted in advance
through a set of experiments. Basically, we do not need to
change these parameters depending on the given problem.
Our strategy of determining the adequate values of system
parameters is stated as follows: (i) determine the parame-
ters k1, k2, k3 for reaction kinetics of DRDS by analyzing
its phase-plane diagram so as to exhibit excitable behavior,
(ii) determine the parameters D1, D2, T0, T1 and T2 so as to
generate the equidistant surfaces with a sufficient level of ac-
curacy, and (iii) determine the time step interval ∆ for Back-
ward Operation, which controls the accuracy of the shortest
path estimation for the given 2-D map. In our experiments,
we employ the system parameters as k1 = 10−3, k2 = 10−6,
k3 = 0.1, D1 = 2, D2 = 0, T0 = 10−3, T1 = T2 = 1 and
∆ = 4.
(i) 2-D Free Space
Figure 8 shows the experimental result on the 2-D free
space. In this example, the map is 512 × 512 free space,
the starting point (nS

1 , n
S
2 ) is (3, 3), and the goal (nG

1 , n
G
2 ) is

(509, 509). The traveling wave initiated from the starting
point propagates from upper left to lower right drawing a cir-
cular pattern in Forward Operation. The shortest path from
the starting point to the goal is obtained as a straight line
in Backward Operation. The obtained path is obviously the
shortest as shown in Fig. 8. �
(ii) Map with Symmetric Obstacles
Figure 9 shows the experimental result on the map with sym-
metric obstacles. In this experiment, we obtain two shortest
paths, since obstacles are symmetric to the line between the
starting point and the goal. As is observed in this exper-
iment, we can obtain two shortest paths which have equal
distances. �
(iii) Maps with Complicated Obstacles
Figure 10 shows typical examples of shortest path search
in complicated mazes, where multiple goals are specified in
advance. All the obtained paths avoid obstacles and are the
shortest paths. �

In the above experiments, we can observe that all the
obtained paths from the starting point to the goal are shortest
in terms of Euclidean distance.

We discuss here the computational complexity of the
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proposed algorithm. The computation time of Forward Op-
eration is proportional to N1 × N2 × nG

0 , and that of Back-
ward Operation is proportional to nG

0 . This means that
the total computation time depends directly on the size of
2-D map and the distance between the starting point and
the goal. Table 1 summarizes measured computation time
of the proposed algorithm for various size of 2-D maps,
where the experimental results clearly show the predicted
tendency. In this experiment, MATLAB ver. 6.5.1 on Pen-
tium 4 (3.2 GHz) is employed for programming, and thus
the computation time can be drastically reduced by trans-
lating the MATLAB code to other implementation-oriented

Fig. 8 Shortest path search on the 2-D free space (the wavefronts in
x1(n0, n1, n2) are superimposed on the map every 80 steps).

Fig. 9 Shortest path search on the map with symmetric obstacles (the
wavefronts in x1(n0, n1, n2) are superimposed on the map every 70 steps).

Table 1 Computation time of the proposed algorithm.

N1 × N2 (nS
1 , n

S
2 ) (nG

1 , n
G
2 ) nG

0 Forward Operation Backward Operation

64 × 64 (2, 2) (62, 62) 1244 2.2906 × 100 sec. 1.3577 × 10sec0 sec.
128 × 128 (3, 3) (125, 125) 2467 3.6947 × 101 sec. 2.7203 × 100 sec.
256 × 256 (3, 3) (253, 253) 4963 3.0242 × 102 sec. 6.6298 × 100 sec.
512 × 512 (3, 3) (509, 509) 9980 2.2645 × 103 sec. 2.7178 × 101 sec.

languages such as C/C++.

Fig. 10 Shortest path search on the maps with complicated obstacles (the
wavefronts in x1(n0, n1, n2) are superimposed on the map every 74 steps).
S is a starting point (nS

1 , n
S
2 ) and Gi (i = 1, · · · , 9) are goals (nG

1 , n
G
2 ).
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5. Conclusion and Discussions

This paper presents a shortest path search algorithm in 2-
D space using the excitable Digital Reaction-Diffusion Sys-
tem (DRDS). The traveling wave generated by the excitable
DRDS has two significant features: (i) propagation with
a constant velocity and (ii) annihilation in collisions with
other waves. These features are effectively used to find the
shortest paths in 2-D maps with various obstacles.

An alternative approach for solving large-scale short-
est path problems may be to employ real chemical reactions
(such as Belousov-Zhabotinsky (BZ) reaction [9], [11]) for
generating traveling waves or to employ electric circuit
models of excitable dynamics [16], [17]. Such approaches
may have advantages of massively parallel operation for
large-scale problems, and are expected to provide interest-
ing alternatives to conventional digital computers. However,
major drawbacks of using real chemical media or electric
circuits are the lack of flexibility in tuning system param-
eters including various constants for reaction-diffusion dy-
namics, and the limited programmability for 2-D maps on
which the shortest-path problem is solved.

On the other hand, an important advantage of the
DRDS-based approach is its flexibility and programmabil-
ity. We can easily modify system parameters as well as
boundary conditions depending on the given problem. The
proposed algorithm can be applied to various navigation
tasks defined in 2-D space, and could be extended also to
higher-dimensional space. A major weakness of the DRDS-
based approach is its computational complexity. Clearly,
this can be addressed with parallel processing technology by
fully exploiting massive parallelism in DRDS computation.

The shortest path search problem discussed in this pa-
per can be considered as an instance of discrete optimiza-
tion problems—optimization problems defined over discrete
structures. A subset of areas covered by discrete optimiza-
tion includes transportation (vehicle routing, job schedul-
ing, packing), industrial planning (production planning, ma-
chine scheduling, inventory management), finance (invest-
ment planning, portfolio management), molecular biology
(DNA alignment), system design (VLSI design, processor
scheduling, network design), etc. It is possible to define
the shortest path search problem discussed in this paper in
terms of discrete optimization. There are many approaches
for solving discrete optimization problems including opti-
mal methods (branch and bound, dynamic programming,
etc.) and heuristics (local search, simulated annealing, ge-
netic algorithms, etc.). Note that the DRDS-based approach
is not a general-purpose framework for discrete optimiza-
tion. A natural question may arise here: What class of
problems could be handled by DRDS-based approach? The
excitable DRDS can generate accurate equidistant surfaces
from a given starting point, and hence it may be applied
to some problems in computational geometry, in which the
equidistant surfaces play an important role to solve the prob-
lems. Some examples of applications are Voronoi diagram

formation and thinning or skeletoning of binary images. De-
tailed characterization of possible applications is being left
for future study.
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