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SUMMARY This paper presents a digital reaction-diffusion
system (DRDS)—a model of a discrete-time discrete-space
reaction-diffusion dynamical system—for designing new image
processing algorithms inspired by biological pattern formation
phenomena. The original idea is based on the Turing’s model
of pattern formation which is widely known in mathematical bi-
ology. We first show that the Turing’s morphogenesis can be
understood by analyzing the pattern forming property of the
DRDS within the framework of multidimensional digital signal
processing theory. This paper also describes the design of an
adaptive DRDS for image processing tasks, such as enhancement
and restoration of fingerprint images.
key words: reaction-di�usion system, pattern formation, digital

signal processing, digital �lters

1. Introduction

Living organisms can create a remarkable variety of
structures to realize their intelligent functions. At
present, we have only limited understanding of the
mechanism of morphogenesis—the development of pat-
terns and forms in living systems. Recently, model-
based studies of morphogenesis employing computer
simulations have begun to attract much attention in
mathematical biology [1], [2]. From an engineering
point of view, the insights into morphogenesis provide
important concepts for devising a new class of intel-
ligent signal processing algorithms employing biolog-
ical pattern formation capability. Motivated by this
viewpoint, several examples of signal processing algo-
rithms inspired by biological pattern formation mecha-
nism have been proposed [3]–[5].

Many biological pattern formation phenomena can
be described and modeled mathematically by reaction-
diffusion equations. In 1952, Alan Turing suggested an
important idea of diffusion-driven instability or Tur-
ing instability for understanding the principle of mor-
phogenesis. Following the Turing’s model, most of
computational models of biological pattern formation
(for both scientific and engineering applications) are
described by continuous-time reaction-diffusion equa-
tions, and hence can not be directly handled by the the-
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ory of digital signal processing. Addressing this prob-
lem, this paper proposes a Digital Reaction-Diffusion
System (DRDS)—a model of a discrete-time discrete-
space reaction-diffusion dynamical system, which is
useful for designing new types of signal processing al-
gorithms based on biological pattern formation mech-
anism. The goal of this study is to construct a frame-
work of digital morphogenesis for manipulating texture
images, patterns, and structures appeared in signal pro-
cessing and computer graphics applications.

The behavior of DRDS can be analyzed system-
atically within the framework of multidimensional dig-
ital signal processing. In Sect. 2 and Sect. 3, we first
show that the Turing’s scenario of pattern formation
can be naturally understood by the stability analysis
of multidimensional digital systems. Section 4 extends
the original DRDS to an adaptive DRDS, and presents
its application to enhancement and restoration of fin-
gerprint images. Our emphasis is that the discretiza-
tion of continuous reaction-diffusion system to obtain
the model of DRDS, which is the main contribution of
this work, allows a good combination of biological pat-
tern formation models and general image filtering tech-
niques. This approach may provide a useful foundation
for designing new image/texture processing algorithms.

2. Reaction-Diffusion System

2.1 Turing’s Model of Pattern Formation

It is suggested that a system of chemical substances,
called morphogens, reacting together and diffusing
through a tissue plays an important role in biological
pattern formation. Spatial patterns in chemical reac-
tions arise mainly from the interaction between reaction
kinetics and diffusion of different substances. Instabil-
ity in respect to diffusion plays an essential role here as
first suggested by Alan Turing. Turing demonstrated
that homogeneous chemical systems could become un-
stable with respect to concentration fluctuations of fi-
nite wavelength and evolve into spatially periodic pat-
terns. We consider here reaction-diffusion systems for
two chemical substances in the form:
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


∂X

∂t
= F (X, Y ) +DX∇2X

∂Y

∂t
= G(X, Y ) +DY ∇2Y

, (1)

where X and Y are concentrations of two chemical sub-
stances, F and G account for nonlinear reaction kinet-
ics, and DX and DY are the diffusion coefficients of
X and Y , respectively. Consider the condition under
which the system (1) can exhibit instabilities around
the equilibrium. Let assume that concentration vector
(X, Y ) can be written: X = X0 + x and Y = Y0 + y,
where (X0, Y0) is the equilibrium of the system. In the
neighborhood of the equilibrium, the linearized equa-
tion for (1) is given by

∂

∂t

[
x
y

]
=

[
FX +DX∇2 FY

GX GY +DY ∇2

] [
x
y

]
, (2)

where FX =
(

∂F
∂X

)
(X0,Y0)

, etc. Let assume the solution
of (2) can be written{

x = x0e
λt+jq·r

y = y0e
λt+jq·r , (3)

where

q: the spatial wavevector,
with the wavenumber |q| = q ,

r: the position vector in continuous space.

With the solution (3), Eq. (2) can be rewritten as

λ
[
x0
y0

]
=

[
FX−DXq

2 FY

GX GY −DY q
2

] [
x0
y0

]
. (4)

The stability properties of the fixed point are deter-
mined by the eigenvalues λ of the 2 × 2 matrix in the
above equation. Consider first the condition of reaction
kinetics such that the fixed point (X0, Y0) is stable in
the absence of diffusion (effectively DX = DY = 0).
This requires the real part of every eigenvalue (under
DX = DY = 0) must be negative, thus we have

FX +GY < 0, FXGY − FYGX > 0. (5)

When we couple the reaction kinetics with spatial diffu-
sion, the system can become unstable even if the origi-
nal reaction kinetics (without diffusion) is stable. This
type of instability is called diffusion-driven instability,
where some eigenvalues become real and positive due
to the effect of non-zero diffusion coefficients (DX and
DY ). In the above example, this condition can be rep-
resented by

(FX −DXq
2)(GY −DY q

2)− FYGX < 0, (6)

for some q �= 0. This instability initiates the growth of
spatial structure characterized by the unstable mode of
wavenumber q.

2.2 N -Morphogen Reaction-Diffusion Systems

This subsection describes a unified approach for ana-
lyzing the general N -species reaction-diffusion system
with two-dimensional (2-D) space indices (r1, r2), which
is written as

∂x̃(t, r1, r2)
∂t

=R̃(x̃(t, r1, r2))+D̃∇2x̃(t, r1, r2), (7)

where

x̃ = [x̃1, x̃2, · · · , x̃N ]T

x̃i: concentration of the i-th morphogen

R̃(x̃) = [R̃1(x̃), R̃2(x̃), · · · , R̃N (x̃)]T

R̃i(x̃): reaction kinetics for the i-th
morphogen

D̃ = diag[D̃1, D̃2, · · · , D̃N ]
diag: diagonal matrix
D̃i: diffusion coefficient of the i-th

morphogen.

In this paper, we focus on the 2-D reaction-diffusion
system to discuss 2-D pattern formation.

In order to investigate the behavior of a reaction-
diffusion system, a linear stability analysis around the
fixed point (equilibrium) given by R̃(x̃(t, r1, r2)) = 0
is widely used. By linear approximation, (7) can be
rewritten as follows

∂x̃s(t, r1, r2)
∂t

= Ãx̃s(t, r1, r2)

+ D̃∇2x̃s(t, r1, r2), (8)

where

x̃s(t, r1, r2): components of a small perturbation
from the equilibrium,

Ã: N ×N matrix consisting of constants.

Taking the Laplace transform on 2-D space (r1, r2), we
have

∂X̃s(t, s1, s2)
∂t

= F̃ (s1, s2)X̃s(t, s1, s2), (9)

where

F̃ (s1, s2) = Ã + (s2
1 + s

2
2)D̃.

In the above equation, X̃s(t, s1, s2) denotes the Laplace
transform of x̃s(t, r1, r2), and s1 and s2 are complex
frequencies. For simplicity, we assume that the matrix
F̃ hasN distinct eigenvalues in the following discussion.
Then, we can rewrite F̃ in the form:
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F̃ (s1, s2) = P̃ (s1, s2)Λ̃(s1, s2)P̃
−1

(s1, s2), (10)

where P̃ is the matrix whose columns are the eigenvec-
tors of F̃ , and Λ̃ is the diagonal matrix of the eigenval-
ues given by

Λ̃(s1, s2) =



λ̃1(s1, s2) 0 · · · 0
0 λ̃2(s1, s2) 0 · · · 0
...

...
. . .

...
0 0 · · · λ̃N (s1, s2)


 . (11)

Using this representation, the solution of (9) can be
written as

X̃s(t, s1, s2)

= P̃ (s1, s2) exp[Λ̃(s1, s2)t]P̃
−1

(s1, s2)X̃s(0, s1, s2).
(12)

The solution (12) gives a non-stationary spatial pattern
unless the dominant eigenvalue λ̃d(s1, s2) is real. Also,
if the real part of λ̃d(s1, s2) is negative, then the spatial
harmonics decays to zero. The condition that is capable
of producing stationary spatial patterns is

λ̃d(s1, s2) ∈ �, λ̃d(s1, s2) > 0, (13)

for some (s1, s2) = (jω1, jω2) �= (0, 0), where � denotes
the set of real numbers. Since the amplitude of every
(ω1, ω2) satisfying the above condition grows as a func-
tion of time, the system becomes unstable. Therefore,
in order to produce stationary spatial patterns, the sys-
tem must be unstable for some ω1, ω2 �= 0.

3. Digital Reaction-Diffusion System

This section defines a digital reaction-diffusion sys-
tem (DRDS)—a model of a discrete-time discrete-space
reaction-diffusion dynamical system having nonlinear
reaction kinetics. The goal of this section is to show
that the Turing’s pattern formation property can be
naturally understood by the stability analysis of the
DRDS within the framework of multidimensional digi-
tal signal processing theory.

3.1 Discretization of a Reaction-Diffusion System

We now sample a continuous variable x̃ in (7) at the
time sampling interval T0, and at the space sampling
intervals T1 and T2. Assuming discrete time-index to
be given by n0 and discrete space indices to be given
by (n1, n2), we have

x(n0, n1, n2) = x̃(n0T0, n1T1, n2T2). (14)

The general DRDS can be written as

x(n0+1, n1, n2)
= x(n0, n1, n2)+R(x(n0, n1, n2))

+D(l ∗ x)(n0, n1, n2), (15)

where

R = T0R̃ = [R1(x), R2(x), · · · , RN (x)]T ,
D = T0D̃ = diag[D1, D2, · · · , DN ],

l(n1, n2)

=




1
T 2
1

(n1, n2) = (−1, 0), (1, 0)
1

T 2
2

(n1, n2) = (0,−1), (0, 1)

−2( 1
T 2
1
+ 1

T 2
2
) (n1, n2) = (0, 0)

0 otherwise,

and ∗ denotes the spatial convolution operator defined
as

(l ∗ x)(n0, n1, n2)

=




(l ∗ x1)(n0, n1, n2)
(l ∗ x2)(n0, n1, n2)

...
(l ∗ xN )(n0, n1, n2)




=




1∑
p1=−1

1∑
p2=−1

l(p1, p2)x1(n0, n1 − p1, n2 − p2)

1∑
p1=−1

1∑
p2=−1

l(p1, p2)x2(n0, n1 − p1, n2 − p2)

...
1∑

p1=−1

1∑
p2=−1

l(p1, p2)xN (n0, n1 − p1, n2 − p2)




.

This gives the basic form of DRDS.

3.2 Linear Stability Analysis of DRDS

In this subsection, we derive the condition for DRDS to
have a pattern formation capability which is equivalent
to the Turing’s diffusion-instability condition. By lin-
earizing the system around the equilibrium (R(x) = 0),
(15) can be written as

xs(n0+1, n1, n2)
= xs(n0, n1, n2)+Axs(n0, n1, n2)

+D(l ∗ xs)(n0, n1, n2), (16)

where

xs(n0, n1, n2): components of a small
perturbation from
the equilibrium,

A: N ×N matrix consisting of constants.

By taking z-transform over 2-D space (n1, n2), we have

Xs(n0 + 1, z1, z2)
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= (I + F (z1, z2))Xs(n0, z1, z2), (17)

where

F (z1, z2)

= A+
{
(z1 − 2 + z−1

1 )
T 2

1

+
(z2 − 2 + z−1

2 )
T 2

2

}
D.

Applying (17) recursively, we have

Xs(n0, z1, z2)=(I+F (z1, z2))n0Xs(0, z1, z2).
(18)

Assuming that the above equation represents a digi-
tal system whose input is Xs(0, z1, z2) and output is
Xs(n0, z1, z2), the term (I+F (z1, z2))n0 can be viewed
as the n0-step transfer function from the input to the
output.

In the following, we will derive the simplified ex-
pression of the n0-step transfer function. For simplic-
ity, we suppose here that the matrix F has N distinct
eigenvalues. In this case, we can rewrite F as

F (z1, z2) = P (z1, z2)Λ(z1, z2)P−1(z1, z2), (19)

where P is the matrix whose columns are the eigenvec-
tors of F , and Λ is the diagonal matrix consisting of
eigenvalues of F given by

Λ(z1, z2) =



λ1(z1, z2) 0 · · · 0
0 λ2(z1, z2) 0 · · · 0
...

...
. . .

...
0 0 · · · λN (z1, z2)


 . (20)

Then, the n0-step transfer function can be represented
as

(I + F (z1, z2))n0

= P (z1, z2)(I +Λ(z1, z2))n0P−1(z1, z2), (21)

where

(I +Λ(z1, z2))n0

=



(1 + λ1(z1, z2))n0 0 · · · 0
0 (1 + λ2(z1, z2))n0 0 · · · 0
...

...
. . .

...
0 0 · · · (1 + λN (z1, z2))n0


 .

We can prove that the Turing’s instability condition
is equivalent to the condition that the n0-step transfer
function becomes non-oscillatory (real) and unstable.
That is, the dominant eigenvalue λd(z1, z2) in (20) must
be real and positive:

λd(z1, z2) ∈ �, λd(z1, z2) > 0, (22)

for some w1, w2 �= 0, where z1 = ejω1T1 and z2 = ejω2T2 .
Since the amplitude of a wave having the spatial fre-
quencies ω1 and ω2 satisfying the above condition grows

Table 1 Classification of patterns generated by DRDS
according to eigenvalue λi.

Every Re[λi] < 0 Some Re[λi] > 0λi (stable) (unstable)

Decaying GrowingComplex Oscillatory Oscillatory
Decaying GrowingReal Non-oscillatory Non-oscillatory

Fig. 1 Flow diagram for an N morphogen DRDS.

as a function of time, DRDS develops 2-D concentra-
tion patterns xs(n0, n1, n2) having the specified spatial
frequencies. Table 1 shows the classification of pat-
terns generated by DRDS according to the eigenvalue
λi. The growing non-oscillatory case could develop sta-
tionary Turing patterns when adequate non-linear func-
tions are employed.

From the view point of digital signal processing,
the linearized form of DRDS (17) can be understood
as a 2-D linear digital filter, where Xs(n0, z1, z2) is the
input (z-transformed form), Xs(n0 + 1, z1, z2) is the
output (z-transformed form), and (I +F (z1, z2)) is the
2-D transfer function. The output of this 2-D digital
filter is recursively fed back to its input as the time in-
dex n0 increases. The instability condition (22) can be
understood as the condition that the 2-D transfer func-
tion (I +F (z1, z2)) becomes unstable. Thus, the linear
analysis of DRDS is closely related to the theoretical
study of multidimensional digital filters.

Assume that xs(n0, n1, n2) = [xs1(n0, n1, n2), · · ·,
xsN (n0, n1, n2)]T , and that aij denotes the (i, j)-
element of the N × N matrix A. Figure 1 shows the
equivalent digital filter structure for the “linearized”
DRDS, where the structure is unfolded for the discrete
time index n0. In practical situation, we first store
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an initial (input) image in a specific morphogen, say
xsi(0, n1, n2), at time 0. After computing the dynam-
ics for n0 steps, we can obtain the output image from
one of the N morphogens at time n0. Assume that we
obtain the output image from xsi(n0, n1, n2) for typical
situation. As illustrated in Fig. 1, the n0-step trans-
fer function from the input xsi(0, n1, n2) to the output
xsi(n0, n1, n2) becomes a composite function of the N
basic filter functions indicated by the dashed-line boxes
in Fig. 1. As the number of morphogens N increases,
the variety of basic filters increases, resulting in signif-
icant increase in the complexity of the total transfer
function.

This n0-step transfer function is represented by
the matrix form (21). If we increase the number of
morphogens, the number of modes (1 + λi(z1, z2))n0

(i = 1, · · · , N) appeared in (21) increases. For a linear
system, its asymptotic behavior is determined by the
dominant mode (1 + λd(z1, z2))n0 having the largest
eigenvalue λd. In general, however, we assume the use
of non-linear reaction kinetics for DRDS whose phase-
space trajectory is bounded within a finite domain,
which suppresses infinite growth of the dominant mode.
Hence, if we increase the number of morphogens, it is
likely that the N different modes exhibit cooperative
behavior to develop highly complex spatial patterns.

For practical applications, there are various dif-
ferent ways of selecting input/output morphogens.
Note that each of N morphogens xs1(n0, n1, n2), · · ·,
xs1(n0, n1, n2) can be represented by a linear combina-
tion of N distinct modes as suggested by (21), hence
there is no essential difference among their pattern
formation capabilities in small-signal (linear) context.
However, the real problem can become more compli-
cated, since non-linear reaction functions are used in
DRDS. Thus, we must carry out intensive simulation
study to determine the optimal input/output pair of
morphogens as well as other design parameters in prac-
tical applications.

3.3 DRDS with Brusselator Reaction Kinetics

We illustrate Turing’s mechanism of pattern forma-
tion in the DRDS employing the “Brusselator” reaction
function, which is one of the most widely studied chem-
ical oscillator [1]. Consider the two-species DRDS given
by (15) with N = 2. We shall define the Brusselator-
based reaction kinetics for DRDS as

R(x) = T0R̃(x̃)

= T0

[
k1 − (k2 + 1)x1 + x2

1x2

k2x1 − x2
1x2

]
. (23)

We can predict the behavior of DRDS (15) employing
the linear stability analysis technique described in the
previous subsection. We can prove that the condition
(22) can be written as

16D1D2

(
1
T 2

1

sin2 ω1T1

2
+

1
T 2

2

sin2 ω2T2

2

)2

− 4{−T0k
2
1D1 + T0(k2 − 1)D2}

×
(

1
T 2

1

sin2 ω1T1

2
+

1
T 2

2

sin2 ω2T2

2

)

+ T 2
0 k

2
1 < 0. (24)

That is, if the above condition is satisfied, the dynamics
develops spatial patterns. For example, consider the
parameter set: k1 = 2, k2 = 4, T0 = 0.01, D1 = 0.01,
D2 = 0.05, and T1 = T2 = 1. In this case, the total
dynamics can be represented as




x1(n0 + 1, n1, n2)
= 0.02 + 0.01x2

1(n0, n1, n2)x2(n0, n1, n2)
+0.95x1(n0, n1, n2)
+0.01(l ∗ x1)(n0, n1, n2)

x2(n0 + 1, n1, n2)
= −0.01x2

1(n0, n1, n2)x2(n0, n1, n2)
+0.04x1(n0, n1, n2) + x2(n0, n1, n2)
+0.05(l ∗ x2)(n0, n1, n2)

(25)

This dynamics satisfies the pattern formation condition
(24) for the frequency band 0.115 ≤ sin2 ω1

2 +sin2 ω2
2 ≤

0.435. Figure 2 is the computer simulation showing
the system develops the 2-D structures of characteristic
spatial frequencies, which is triggered off by random
disturbances.

3.4 Enhancement of Fingerprint Images with DRDS

This subsection presents the application of DRDS to
processing of fingerprint images. Figure 3 shows the
construction of the system, where Brusselator-based
DRDS defined by (25) is employed. In this case, the
dynamics has the equilibrium (x1, x2) = (2, 2), and
the variation ranges of variables (x1, x2) are bounded
around the equilibrium point as 1 ≤ x1 ≤ 3 and
1 ≤ x2 ≤ 3. Hence, we first scale the [0, 255] gray-scale
image into [1, 3] range. The scaled image becomes the
initial input for the 1st morphogen x1(0, n1, n2), while
the initial condition of the 2nd morphogen is given by
x2(0, n1, n2) = 2 (equilibrium). The zero-flux Neu-
mann boundary condition is employed for computing
the dynamics. After n0 steps of DRDS computation,
we obtain x1(n0, n1, n2) as the output image, which is
scaled back into the [0, 255] gray-scale image to produce
the final output.
Example 1: Enhancement of a fingerprint image

We demonstrate here an example of fingerprint en-
hancement using Brusselator-based DRDS. We use dy-
namics (25), but adjusted the spatial sampling param-
eters as T1 = 0.6863 and T2 = 0.5759 corresponding
to the inherent spatial frequency of the given finger-
print image. Note that a typical fingerprint image has



1914
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.8 AUGUST 2001

Fig. 2 Formation of a Turing pattern using DRDS with Brusselator reaction kinetics:
(a) time evolution of the concentration x1(n0, n1, n2), (b) the corresponding amplitude
spectra in frequency domain.

Fig. 3 System block diagram.

Fig. 4 Enhancement of a fingerprint image: (a) time evolution of concentration
x1(n0, n1, n2), (b) the corresponding amplitude spectra in frequency domain.

an elliptic spectral distribution in frequency domain
(ω1, ω2). Every fingerprint has its own combination of
horizontal/vertical spatial frequency components. For
effective enhancement of a given fingerprint image, we
must adjust the unstable frequency band of DRDS to
cover the dominant frequency components of the given
fingerprint image. The parameters T1 and T2 are par-
ticularly useful for this purpose. Smaller T1 and T2

imply a larger radius of unstable frequency band. Fig-
ure 4(a) shows the input fingerprint image x1(0, n1, n2)
(256×256 pixels) and the output images x1(n0, n1, n2)
at time steps n0 = 300, 600 and 900, respectively. Fig-
ure 4(b) shows the corresponding amplitude spectra.
The inherent spatial frequency components of the given
fingerprint image is enhanced significantly by the pat-
tern formation capability of DRDS. ✷



ITO et al.: DIGITAL REACTION-DIFFUSION SYSTEM
1915

Fig. 5 Generation of the orientation mask.

Fig. 6 Enhancement of a fingerprint image: (a) original image, (b) enhanced image
using DRDS, (c) and (d) enhanced image using adaptive DRDS.

4. Adaptive DRDS for Fingerprint Image
Restoration

The DRDS with spatially isotropic diffusion terms has
produced some broken lines in the output image of
Fig. 4(a) since it does not take account of the local ori-
entation of ridge flow. In order to solve this problem,
this section presents an adaptive DRDS model in which
we can use the local orientation of the ridge in the fin-
gerprint image to guide the action of DRDS. This can
be realized by introducing orientation masks to be con-
volved with the diffusion terms.

An adaptive DRDS can be written as

x(n0+1, n1, n2)
= x(n0, n1, n2)+R(x(n0, n1, n2))

+D(hn1n2 ∗ l ∗ x)(n0, n1, n2), (26)

where

hm1m2(n1, n2)=[hm1m2
1 (n1, n2),· · ·, hm1m2

N (n1, n2)]T,
hm1m2

i (n1, n2): orientation mask at the pixel
(m1,m2) for the i-th morphogen,

(hn1n2 ∗ l ∗ x)(n0, n1, n2)

=




(hn1n2
1 ∗ l ∗ x1)(n0, n1, n2)

(hn1n2
2 ∗ l ∗ x2)(n0, n1, n2)

...
(hn1n2

N ∗ l ∗ xN )(n0, n1, n2)


 .

In the following example, we assume the use of two-
species Brusselator-based DRDS defined by (25), and

introduces 32 × 32 orientation masks to the original
DRDS. We define the orientation mask hm1m2

1 (n1, n2)
at the pixel (m1,m2) as a 32 × 32 real coefficient
matrix having values within the window (n1, n2) =
(−16,−16) ∼ (15, 15), which can be automatically de-
rived as follows (see also Fig. 5): (i) take 32×32 window
around the pixel (m1,m2) and Fourier transform it in
terms of space indices (n1, n2), (ii) extract the domi-
nant ridge orientation θ from the transformed local im-
age, (iii) generate the mask pattern Hm1m2

1 (jω1, jω2)
having the orientation θ in frequency domain:

Hm1m2
1 (jω1, jω2) =




1 for unstable frequency band
(black pixels in Fig. 5(iii))

2 otherwise,

and (iv) taking the inverse Fourier transform to obtain
the orientation mask hm1m2

1 (n1, n2). The orientation
mask hm1m2

2 (n1, n2) for the second substance, on the
other hand, has the value 1 at the center (n1, n2) =
(0, 0), and equals to 0 for other coordinates (n1, n2).
Thus, the dynamics for the substance x2(n0, n1, n2)
does not take account of the local orientation.

As an application example of adaptive DRDS, we
consider here the enhancement and restoration tasks
for fingerprint images.
Example 2: Enhancement of a fingerprint image

Figure 6 shows the enhancement of a finger-
print image using adaptive DRDS. The input image
x1(0, n1, n2) shown in (a) is first processed by the orig-
inal DRDS with isotropic diffusion for n0 = 300 steps
to obtain x1(300, n1, n2) shown in (b). From this pic-
ture, the orientation mask hm1m2

1 (n1, n2) is calculated.
Then, the adaptive DRDS is employed for further en-
hancement of fingerprint. After additional 300 steps of
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Fig. 7 Restoration of a fingerprint image: (a) input image, (b)–(h) restored image by
using adaptive DRDS.

Fig. 8 Reconstruction of a fingerprint pattern from a subsampled image: (a) original
image, (b) 1/16 subsampled image, (c) and (d) restored image using adaptive DRDS.

adaptive DRDS processing, we have the final output
x1(600, n1, n2) as shown in (d). Thus, the use of ori-
entation masks in the adaptive DRDS makes possible
significant improvement in image quality, in compari-
son with that of the original DRDS (Fig. 4(a)). ✷

Example 3: Restoration of a fingerprint image
Assume that only the center part of the fingerprint

image used in Example 2 is given as shown in Fig. 7(a),
and that all the orientation masks extracted in Exam-
ple 2 are available. Even under such condition, the
adaptive DRDS can restore the whole fingerprint pat-
tern as shown in Figs. 7(b)–(h), where the fingerprint
spreads out from the center under the guidance of the
orientation masks. ✷

This example assumes the use of orientation masks
extracted in advance. In many applications, however, it
is likely that the information of local orientation must
be extracted from the blurred input image. The fol-
lowing example considers such situation, where a low-
quality fingerprint image is given and the system must
reconstruct the complete fingerprint pattern without
any additional information.
Example 4: Reconstruction of fingerprint patterns
from subsampled images

We consider here the problem of restoring the origi-
nal fingerprint image from the subsampled image. The

adaptive DRDS used here employs the same reaction
kinetics and parameters as in Examples 2 and 3. The
input image is obtained by subsampling the original
fingerprint image by the subsampling rate 1/16. This
process reduces the number of pixels by 1/16. Fig-
ures 8(a) and (b) show the original image and the sub-
sampled image, respectively. The system first extracts
the local orientation information from the subsampled
image (b), and generates orientation masks to guide the
action of adaptive DRDS. Figure 8(d) shows the output
x1(400, n1, n2) of the adaptive DRDS.

Figure 9 shows the correlation score (similarity)
between the original fingerprint image and the output
of adaptive DRDS for four different fingerprint samples.
To calculate similarity between the two fingerprint im-
ages (the original image and the restored image), we
use phase-only correlation technique [6]. The phase-
only correlation function has an efficient discrimina-
tion capability for fingerprint images, as demonstrated
in recent commercial products of fingerprint-matching
devices [6]. The correlation score plotted in Fig. 9 is
calculated by taking the sum of the ten highest val-
ues of the 2-D phase-only correlation function of two
images. For every fingerprint sample, we can confirm
that the similarity between the original image and the
restored image x1(n0, n1, n2) increases as the number of
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Fig. 9 Correlation between the original image and the restored
image.

steps n0 increases. The highest correlation score > 0.8
is observed around n0 = 200 steps for every fingerprint
sample. After the peak, the correlation score gradually
decreases as the time index n0 increases. This is be-
cause the input image is stored only in the initial state
variable x1(0, n1, n2), and the recursive dynamics grad-
ually deforms the original shape of the fingerprint as
the number of processing steps increases. Recently, we
have investigated the possibility of improving the recog-
nition capability for blurred fingerprint images by using
the DRDS-based restoration technique. An interesting
observation is that the optimal discrimination capabil-
ity could be obtained around n0 = 400–500 rather than
at the step of the highest correlation score. In the range
of n0 = 400–500, the correlation scores for the wrong
fingerprints drop steeply while the correct fingerprint
keeps sufficient level of correlation. Although further
analysis is required for practical application, this ex-
ample demonstrates a potential capability of adaptive
DRDS to enhance the performance of matching algo-
rithms for blurred fingerprint images. ✷

5. Conclusion

This paper presents a digital reaction-diffusion sys-
tem (DRDS)—a model of a discrete-time discrete-space
reaction-diffusion dynamical system—useful for signal
processing and computer graphics applications. This
paper also describes the design of an adaptive DRDS
having the capability to reconstruct a complete finger-
print pattern from a blurred image. We are expecting
that the framework of DRDS may provide a theoretical
foundation of digital morphogenesis, that is, a technique
for applying the principle of biological pattern forma-
tion phenomena to many engineering problems.
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