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ABSTRACT

This paper presents a digital reaction-diffusion sys-
tem (DRDS) – a model of a discrete-time discrete-
space reaction-diffusion dynamical system – for de-
signing new image processing algorithms inspired
by biological pattern formation phenomena. The
original idea is based on the Turing’s model of pat-
tern formation, which is widely known in mathe-
matical biology. The DRDS is useful for gener-
ating biological textures, patterns and structures.
This paper describes the design of DRDS for image
processing tasks, such as biological texture gener-
ation, fingerprint image restoration and shortest
path search.

1. INTRODUCTION

Living organisms can create a remarkable va-
riety of patterns and forms from genetic informa-
tion. In embryology, the development of pattern-
s and forms is sometimes called Morphogenesis.
In 1952, Alan Turing suggested that a system of
chemical substances, called morphogens, reacting
together and diffusing through a tissue, is ade-
quate to account for the main phenomena of mor-
phogenesis [1]. From an engineering viewpoint,
the insights into morphogenesis provide importan-
t concepts for devising a new class of intelligent
signal processing algorithms inspired by biological
pattern formation phenomena [2]–[4].

In general, most of computational models of bi-
ological pattern formation are described by continuous-
time continuous-space reaction-diffusion equation-
s, and hence can not be directly handled by the
theory of digital signal processing. Addressing this
problem, we propose a Digital Reaction-Diffusion
System (DRDS) — a model of a discrete-time discrete-
space reaction-diffusion dynamical system, which

is useful for designing new types of signal process-
ing algorithms based on biological pattern forma-
tion mechanism [5], [6]. Using the DRDS, math-
ematical models of morphogenesis can be under-
stood by multidimensional digital signal process-
ing theory. In this paper, we present the basic
framework of DRDS, and its application to com-
puter graphics, fingerprint image restoration and
shortest path search.

2. DIGITAL REACTION-DIFFUSION
SYSTEM (DRDS)

A Digital Reaction-Diffusion System (DRDS) –
a model of a discrete-time discrete-space reaction-
diffusion dynamical system – can be naturally de-
rived from the original reaction-diffusion system
defined in continuous space and time. The general
M -morphogen reaction-diffusion system with two-
dimensional (2-D) space indices (r1, r2) is written
as

∂x̃(t, r1, r2)
∂t

= R̃(x̃(t, r1, r2)) + D̃∇2x̃(t, r1, r2),

(1)
where

x̃ = [x̃1, x̃2, · · · , x̃M ]T ,
x̃i: concentration of the i-th morphogen,

R̃(x̃) = [R̃1(x̃), R̃2(x̃), · · · , R̃M (x̃)]T ,
R̃i(x̃): reaction kinetics for the i-th morphogen,

D̃ = diag[D̃1, D̃2, · · · , D̃M ],
diag: diagonal matrix,
D̃i: diffusion coefficient of the i-th morphogen.

We now sample a continuous variable x̃ in (1) at
the time sampling interval T0, and at the space
sampling intervals T1 and T2. Assuming discrete
time-index to be given by n0 and discrete space
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Figure 1: Formation of a spot pattern using DRDS with Brusselator reaction kinetics.

indices to be given by (n1, n2), we have

x(n0, n1, n2) = x̃(n0T0, n1T1, n2T2). (2)

Using this discritization, the general DRDS can be
obtained as

x(n0+1, n1, n2) = x(n0, n1, n2)
+R(x(n0, n1, n2)) + D(l ∗ x)(n0, n1, n2), (3)

where

x = [x1, x2, · · · , xM ]T ,

R = T0R̃ = [R1(x), R2(x), · · · , RM (x)]T ,

D = T0D̃ = diag[D1, D2, · · · , DM ],
l(n1, n2)

=




1
T 2
1
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1
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−2( 1
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+ 1
T 2
2
) (n1, n2) = (0, 0)

0 otherwise,

and ∗ is the spatial convolution operator defined
as

(l ∗ x)(n0, n1, n2)

=




(l ∗ x1)(n0, n1, n2)
(l ∗ x2)(n0, n1, n2)

...
(l ∗ xM )(n0, n1, n2)
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.

The DRDS described by Eq. (3) can be un-
derstood as a 3-D nonlinear digital filter. We first

store an initial (input) image in a specific mor-
phogen, say xi(0, n1, n2), at time 0. After com-
puting the dynamics for n0 steps, we can obtain
the output image from one of the M morphogens,
say xi(n0, n1, n2), at time n0. In general, linear
digital filters with guaranteed stability are wide-
ly used in many signal processing applications. In
our application, however, we employ the DRDS
with nonlinear reaction kinetics R(x) satisfying
the diffusion-driven instability condition [5]. In
this case, DRDS becomes an unstable 3-D nonlin-
ear digital filter having significant pattern forma-
tion capability.

In this paper, we use the two-morphogen DRD-
S (M = 2) with the Brusselator reaction kinetics,
which is one of the most widely studied chemical
oscillators [7]. The two-morphogen Brusselator-
based DRDS is defined as follows:[

x1(n0+1, n1, n2)
x2(n0+1, n1, n2)

]
=

[
x1(n0, n1, n2)
x2(n0, n1, n2)

]

+
[

R1(x1(n0, n1, n2), x2(n0, n1, n2))
R2(x1(n0, n1, n2), x2(n0, n1, n2))

]

+
[

D1(l ∗ x1)(n0, n1, n2)
D2(l ∗ x2)(n0, n1, n2)

]
, (4)

where

R1(x1, x2) = T0

{
k1 − (k2 + 1)x1 + x2

1x2

}
,

R2(x1, x2) = T0

(
k2x1 − x2

1x2

)
.

In this paper, we consider the parameter set:
k1 = 2, k2 = 4, T0 = 0.01, D1 = T0 and D2 =
5T0. In this case, the DRDS shows the spot pat-
tern formation from random initial concentration
as shown in Fig. 1. By changing the parameters,
we can generate various biological patterns.

3. FINGERPRINT RESTORATION

In this section, we show the fingerprint image
enhancement/restoration using DRDS.
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Figure 2: Enhancement of a fingerprint image.
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Figure 3: Generation of the orientation mask.

The two-morphogen DRDS (4) can be used to
enhance fingerprint patterns [5]. We first set the
initial fingerprint image in x1(0, n1, n2), at time 0.
Note that spatial sampling parameters T1 and T2

should be adjusted according to the inherent spa-
tial frequency of the given fingerprint image. The
dynamics (4) has the equilibrium (x1, x2) = (2, 2),
and the variation ranges of variables (x1, x2) are
bounded around the equilibrium point as 1≤x1≤3
and 1 ≤ x2 ≤ 3 in the case of given parameter
set. Hence, we first scale the [0,255] gray-scale fin-
gerprint image into [1,3] range. The scaled image
becomes the initial input x1(0, n1, n2), while the
initial condition of the second morphogen is giv-
en by x2(0, n1, n2) = 2. The zero-flux Neumann
boundary condition is employed for computing the
dynamics. After n0 steps of the DRDS computa-
tion, we obtain x1(n0, n1, n2) as the output image,
which is scaled back into the [0,255] gray-scale im-
age to produce the final output.

Figure 2 shows the enhancement of a finger-
print image using the DRDS. Our initial observa-
tion, however, shows that the DRDS with a spa-
tially isotropic diffusion term of (4) often produces
some broken ridge lines in processing fingerprint
images as shown in Fig. 2(e), since it does not
take account of the local orientation of ridge flow.
In order to solve this problem, the next section
defines an adaptive DRDS model, in which we can
use the local orientation of the ridge flow in a fin-
gerprint image to guide the action of DRDS. This

can be realized by introducing orientation masks
to be convolved with the diffusion terms in DRDS
(4).

We modify the definition of the simple two-
morphogen DRDS (4) to have an adaptive DRD-
S dedicated to fingerprint restoration tasks. The
two-morphogen adaptive DRDS with the Brusse-
lator reaction kinetics can be written as[

x1(n0+1, n1, n2)
x2(n0+1, n1, n2)

]
=

[
x1(n0, n1, n2)
x2(n0, n1, n2)

]

+
[

R1(x1(n0, n1, n2), x2(n0, n1, n2))
R2(x1(n0, n1, n2), x2(n0, n1, n2))

]

+
[

D1(hn1n2
1 ∗ l ∗ x1)(n0, n1, n2)

D2(hn1n2
2 ∗ l ∗ x2)(n0, n1, n2)

]
, (5)

where

hm1m2
i (n1, n2): orientation mask at the pixel

(m1, m2) for the i-th morphogen,
R1(x1, x2), R2(x1, x2):

the Brusselator reaction kinetics.

In the above equation, we define the orientation
mask hm1m2

1 (n1, n2) at the pixel (m1, m2) as a
32 × 32 matrix of real coefficients within the win-
dow (n1, n2) = (−16,−16) ∼ (15, 15). The mask
hm1m2

1 (n1, n2) controls the dominant orientation
of the generated pattern at every pixel (m1, m2)
according to the local ridge flow in the given fin-
gerprint image. The orientation mask can be auto-
matically derived as follows (Fig. 3): (i) take the



procedure Adaptive DRDS with Hierarchical Orienta-
tion Estimation

1. begin

2. p := 2; { initialize the image partitioing factor}
3. while time step n0 equals to 500 do

4. begin

5. if p is less than 9 then

6. begin

7. partition the input image into
p2 sub-images;

8. generate independent orientation masks for
p2 sub-images;

9. run the adaptive DRDS (Eq. (5)) for
10 time steps;

10. p := p + 1

11. end
12. else

13. begin

14. generate independent orientation masks
for all pixels;

15. run the adaptive DRDS (Eq. (5)) for
10 time steps

16. end

17. end
18. end.

Figure 4: Algorithm for the adaptive DRDS with
hierarchical orientation estimation.

Fourier transform of the local image around the
pixel (m1, m2), (ii) extract the dominant ridge ori-
entation θ from the transformed image, (iii) gen-
erate a mask pattern Hm1m2

1 (jω1, jω2) having the
orientation θ in frequency domain as

Hm1m2
1 (jω1, jω2)=




1 for unstable frequency band
(black pixels in Fig. 3(iii))

2 otherwise,

and (iv) take the inverse Fourier transform to ob-
tain the orientation mask hm1m2

1 (n1, n2). The ori-
entation mask hm1m2

2 (n1, n2) for the second mor-
phogen, on the other hand, has the value 1 at the
center (n1, n2) = (0, 0), and equals to 0 for the oth-
er coordinates (n1, n2). Thus, the dynamics for the
morphogen x2(n0, n1, n2) does not take account of
the local orientation.

In practical situation, it is difficult to obtain
the exact orientation masks from blurred finger-
prints directly. Addressing this problem, we esti-
mates local orientation masks recursively using a
coarse-to-fine approach as shown in Fig. 4. This
restoration algorithm starts with rough estimation

of local orientation for four sub-images (p = 2).
The image partitioning factor p gradually increas-
es as restoration step n0 increases. We can obtain
pixel-wise orientation masks hm1m2(n1, n2) after
80 time steps. This simple strategy makes pos-
sible significant improvement in the precision of
orientation estimation.

The problem considered here is to restore the
original fingerprint image from its “subsampled”
image. For this purpose, we generate a subsam-
pled fingerprint image from the original image as
follows: (i) partition the original image into R×S-
pixel rectangular blocks, and (ii) select one pixel
randomly from every block and eliminate all the
other pixels (set 127, middle gray-level, to the pix-
els). The image thus obtained has the same size
as the original image, but the number of effective
pixels is reduced to 1/(R×S). Figure 5 shows the
original image, the subsampled image (n0 = 0)
and restored images at n0 = 100, 200 and 400, re-
spectively, for the case of 1/(6 × 6) subsampling.
We can observe that the fingerprint pattern is re-
constructed from the subsampled image gradually
as time step n0 increases.

4. SHORTEST PATH SEARCH

This section presents the shortest path search
using the DRDS with FitzHugh-Nagumo (FHN)
reaction kinetics, which is one of the most widely
studied excitable model [7]. We shall define the
FHN-based reaction kinetics for DRDS as

R1(x1, x2) =
T0

k1
{x1(x1−k2)(1−x1)−x2},

R2(x1, x2) = T0 (x1 − k3x2) . (6)

In this paper, we employ the parameter set: k1 =
10−3, k2 = 10−6, k3 = 0.1，D1 = 40, D2 = 0,
T0 = 10−3 and T1 = T2 = 1.

The excitable DRDS exhibits spatio-temporal
wave patterns. The excitable DRDS indicates the
most important features of FHN dynamics; waves
exhibit constant velocities and annihilate in colli-
sions with boundaries or other waves. These fea-
tures suggest a unique algorithm for the shortest
path planning problems as described in [8]. Figure
6 shows a superposition of a excitable wave propa-
gating through two-dimensional complex maze. A
single propagating wave generates a map for find-
ing the shortest path from a start point to any
specified point in these maze.
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Figure 5: Fingerprint restoration from a subsampled image with subsampling rate 1/(6 × 6).
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Figure 6: Results of shortest path search using DRDS.

5. CONCLUSION

This paper presents a digital reaction-diffusion
system (DRDS) – a model of a discrete-time discrete-
space reaction-diffusion dynamical system – useful
for signal processing and computer graphics ap-
plications. We are expecting that the framework
of DRDS may provide a theoretical foundation of
digital morphogenesis, that is, a technique for ap-
plying the principle of biological pattern formation
phenomena to many engineering problems.
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