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Abstract. Most existing Multi-View Stereo (MVS) algorithms employ
the image matching method using Normalized Cross-Correlation (NCC)
to estimate the depth of an object. The accuracy of the estimated depth
depends on the step size of the depth in NCC-based window matching.
The step size of the depth must be small for accurate 3D reconstruc-
tion, while the small step significantly increases computational cost. To
improve the accuracy of depth estimation and reduce the computational
cost, this paper proposes an efficient image matching method for MVS.
The proposed method is based on Phase-Only Correlation (POC), which
is a high-accuracy image matching technique using the phase components
in Fourier transforms. The advantages of using POC are (i) the corre-
lation function is obtained only by one window matching and (ii) the
accurate sub-pixel displacement between two matching windows can be
estimated by fitting the analytical correlation peak model of the POC
function. Thus, using POC-based window matching for MVS makes it
possible to estimate depth accurately from the correlation function ob-
tained only by one window matching. Through a set of experiments us-
ing the public MVS datasets, we demonstrate that the proposed method
performs better in terms of accuracy and computational cost than the
conventional method.

1 Introduction

In recent years, the topic of Multi-View Stereo (MVS) has attracted much atten-
tion in the field of computer vision [1–10]. MVS aims to reconstruct a complete
3D model from a set of images taken from different viewpoints. The major MVS
algorithm consists of two steps: (i) estimating the 3D points on the basis of
a photo-consistency measure and visibility model using a local image matching
method and (ii) reconstructing a 3D model from estimated 3D point clouds. The
accuracy, robustness and computational cost of MVS algorithms depend on the
performance of the image matching method, which is the most important factor
in MVS algorithms.
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Most MVS algorithms employ Normalized Cross-Correlation (NCC)-based
image matching to estimate 3D points [1, 5, 6, 8–10]. Goesele et al. [5] have ap-
plied NCC-based image matching to the plane-sweeping approach to estimate a
reliable depth map by cumulating the correlation values calculated from multiple
image pairs with changing the depth. Campbell et al. [8] estimated a depth map
more accurately than Goesele et al. [5] by using the matching results obtained
from neighboring pixels to reduce outliers. Bradley et al. [9] and Furukawa et al.
[10] achieved robust image matching by transforming the matching window in
accordance with not only the depth but also the normal of the 3D points.

In the MVS algorithms mentioned in the above, an NCC value between
matching windows is used as the reliability of a 3D point. The optimal 3D point
is estimated by iteratively computing NCC values between matching windows
with changing the parameter of 3D point, i.e., depth or normal. For example,
the plane-sweeping approach such as that of Goesele et al. [5] computes NCC
values between matching windows with discretely changing the depth and selects
the depth that has the highest NCC value as the optimal one. To estimate the
accurate depth, a sufficiently small step of the depth must be employed, which
significantly increases computational cost. If the step of the depth is small, the
translational displacement of a 3D point is a sub-pixel on the multi-view im-
ages. Most existing methods assume that the sub-pixel resolution of a matching
window is represented by linear interpolation. This assumption, however, is not
always true.

In this paper, we propose an efficient image matching method for MVS using
Phase-Only Correlation (POC) (or simply “phase correlarion”). POC is a kind
of correlation function calculated only from the phase components in Fourier
transform. The translational displacement and similarity between two images
can be estimated from the position and height of the correlation peak of the
POC function, respectively. Kuglin et al. [11] proposed a fundamental image
matching technique using POC, and Takita et al. [12] proposed a sub-pixel im-
age registration technique using POC. The major advantages of using POC-
based instead of NCC-based image matching are the following two points: (i)
the correlation function is obtained only by one window matching and (ii) the
accurate sub-pixel translational displacement between two windows can be es-
timated by fitting the analytical correlation peak model of the POC function.
By applying POC-based image matching to depth estimation, the peak position
of the POC function indicates the displacement between the assumed and true
depth. Hence, we can directly estimate the true depth from the results of only
one POC-based window matching. By introducing POC-based image matching
to the plane-sweeping approach, we need little window matching to estimate the
true depth from multi-view images. In addition, the accuracy of depth estima-
tion can be improved by integrating the POC functions calculated from multiple
stereo image pairs. Thus, using POC-based window matching for MVS makes
it possible to estimate depth accurately from the correlation function obtained
only by one window matching. Through a set of experiments using the pub-
lic multi-view stereo datasets [13], we demonstrate that the proposed method
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performs better in terms of the accuracy and the computational cost than the
method proposed by Goesele et al. [5].

2 Phase-Only Correlation

This section describes the fundamentals of POC-based image matching. Most
existing POC-based image matching methods are for 2D images. The image
matching between stereo images can be reduced to a 1D image matching through
stereo rectification. In this paper, we employ 1D POC function to estimate the
depth from multi-view images.

POC is an image matching technique using the phase components in Discrete
Fourier Transforms (DFTs) of given images. Consider two N -length 1D image
signals f(n) and g(n), where the index range is −M, · · · ,M (M > 0) and hence
N = 2M + 1. Let F (k) and G(k) denote the 1D DFTs of the two signals. F (k)
and G(k) are given by

F (k) =

M∑
n=−M

f(n)W kn
N = AF (k)ejθF (k), (1)

G(k) =

M∑
n=−M

g(n)W kn
N = AG(k)ejθG(k), (2)

where k = −M, · · · ,M , WN = e−j
2π
N , AF (k) and AG(k) are amplitude, and

θF (k) and θG(k) are phase. The normalized cross-power spectrum R(k) is given
by

R(k) =
F (k)G(k)∣∣∣F (k)G(k)

∣∣∣ = ej(θF (k)−θG(k)), (3)

where G(k) is the complex conjugate of G(k), and θF (k) − θG(k) denotes the
phase difference. The POC function r(n) is defined by Inverse DFT (IDFT) of
R(k) and is given by

r(n) =
1

N

M∑
k=−M

R(k)W−knN . (4)

Shibahara et al. [14] derived the analytical peak model of 1D POC function.
Let us assume that f(n) and g(n) are minutely displaced with each other. The
analytical peak model of 1D POC function can be defined by

r(n) ' α

N

sin (π(n+ δ))

sin
(
π
N (n+ δ)

) , (5)

where δ is a sub-pixel peak position and α is a peak value. The peak position
n = δ indicates the translational displacement between the two 1D image signals
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Fig. 1. Example of 1D POC-based image matching.

and the peak value α indicates the similarity between the two 1D image signals.
The translational displacement with sub-pixel accuracy can be estimated by
fitting the model of Eq. (5) to the calculated data array around the correlation
peak, where α and δ are fitting parameters. In addition, we employ the following
techniques to improve the accuracy of 1D image matching: (i) windowing to
reduce boundary effects, (ii) spectral weighting for reducing aliasing and noise
effects, and (iii) averaging 1D POC functions to improve peak-to-noise ratio [12,
14]. Fig. 1 shows an example of 1D POC-based image matching.

3 POC-Based Image Matching for Multi-View Stereo

In this section, we describe a POC-based image matching method for MVS.
The existing algorithms using NCC-based image matching need to do many
NCC computations with changing the assumed depth to estimate the accurate
depth of a 3D point. On the other hand, the proposed method estimates the
accurate depth only with one window matching by approximating the depth
change on a 3D point by the translational displacement on the stereo image and
estimating the translational displacement using POC. The proposed method also
enhances the estimation accuracy by integrating the POC functions calculated
from multiple stereo image pairs.

The POC functions calculated from stereo images with different view-points
indicate the different peak positions due to the difference in camera positions.
To integrate the POC functions, the proposed method normalizes the disparity
of each stereo image and integrates the POC functions on the same coordinate
system. So far, Okutomi et al. [15] have proposed the disparity normalization
technique to integrate correlation functions calculated from stereo images with
different viewpoints. This technique, however, assumes that all cameras are lo-
cated on the same line. This assumption is not suitable in a practical situation.
The disparity normalization technique used in the proposed method, which is
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a generalized version of the technique proposed by Okutomi et al. [15], can in-
tegrate the correlation functions calculated from stereo images with different
viewpoints even if the cameras are not located on the same line.

Let V = {V0, · · · , VH−1} be the multi-view images with known camera pa-
rameters. We consider a reference view VR ∈ V and neighboring views C =
{C0, · · · , CK−1} ⊂ V − {VR} as input images, where H and K are the number
of the multi-view images and the number of the neighboring views, respectively.
The proposed method generates K pairs of a rectified stereo image and estimates
the depth of each point in VR from the peak position of the correlation function
obtained by integrating the POC functions with normalized disparity. We use
a stereo rectification method employed in the Camera Calibration Toolbox for
Matlab [16].

Next, we describe the key techniques of the proposed method: (i) normalizing
the disparity and (ii) integrating the POC functions. Then, we describe the
proposed depth estimation method using POC-based image matching.

3.1 Normalization of Disparity

We consider that the camera coordinate of the reference view VR corresponds to
the world coordinate. Let V rect

R,i -Crect
i be the rectified stereo image pair, where

V rect
R,i is the rectified image of VR so as to correspond to the view angle of Ci.

The relationship among the 3D point M = [X,Y, Z]T in the camera coordinate
of VR, the rectified stereo image V rect

R,i -Crect
i (Ci ∈ C) with disparity di, and the

rectified stereo image V rect
R,j -Crect

j (Cj ∈ C − {Ci}) with disparity dj is defined
by

M =

XY
Z

 = Ri

 (ui − u0i)Bi/di
(vi − v0i)Bi/di

βiBi/di

 = Rj

 (uj − u0j)Bj/dj
(vj − v0j)Bj/dj

βjBj/dj

 , (6)

where (ul, vl) is the corresponding point of M in V rect
R,l , (u0l, v0l) is the optical

center of V rect
R,l , βl is focal length and Bl is baseline length between V rect

R,l -Crect
l

(l = i, j). Rl denotes a rotation matrix from the reference view VR to the rectified
reference view V rect

R,l used in stereo rectification for V rect
R,l -Crect

l , and is given by

Rl =

Rl11 Rl12 Rl13Rl21 Rl22 Rl23
Rl31 Rl32 Rl33

 . (7)

From Eq. (6), we derive the relationship between di and dj as follows

di=
Ri31(ui−u0i)+Ri32(vi−v0i)+Ri33βi
Rj31(uj−u0j)+Rj32(vj−v0j)+Rj33βj

Bi
Bj
dj . (8)

From Eq. (8), the relationship between di and dj is represented by the scaling
factor that depends on the camera parameters and the coordinates of the cor-
responding points in V rect

R . We define the normalized disparity d to take into
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Fig. 2. Geometric relationship between the location of 3D point and the disparity on
the images.

account the scale factor for each disparity. If we consider the rectified stereo
image pair V rect

R,i -Crect
i (i = 0, · · · ,K − 1), the relationship between di in each

rectified stereo pair and the normalized disparity d can be written as

di = sid, (9)

where si denotes the scale factor for the disparity di and is given by

si=
(Ri31(ui−u0i)+Ri32(vi−v0i)+Ri33βi)Bi

1

K

K−1∑
l=0

(Rl31(ul−u0l)+Rl32(vl−v0l) +Rl33βl)Bl

. (10)

In this case, the 3D point M can be defined by

M = Ri

 (ui − u0i)Bi/(sid)
(vi − v0i)Bi/(sid)

βiBi/(sid)

 . (11)

3.2 Integration of POC Function

We consider the 3D point M and its minutely displaced 3D point M′ = M+∆M,
where ∆M = [∆X,∆Y,∆Z]T denotes the minute displacement, as shown in
Fig. 2. Let d and d′ be the normalized disparities of M and M′, respectively.
Assuming that M is the true 3D point, the relationship between d and d′ is given
by

d′ = d+ δ, (12)
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Fig. 3. Integration of the POC functions calculated from stereo image pairs with differ-
ent viewpoints: (a) POC functions before disparity normalization and (b) POC func-
tions after disparity normalization.

where δ denotes the error between the normalized disparities d and d′. For the
rectified stereo image pair V rect

R,i -Crect
i (i ∈ {0, · · · ,K − 1}), the relationship

between the 3D point M′ and the normalized disparity d is

M′ = Ri

 (ui − u0i)Bi/(si(d+ δ))
(vi − v0i)Bi/(si(d+ δ))

βiBi/(si(d+ δ))

 . (13)

Let fi and gi be the matching windows extracted from V rect
R,i and Crect

i cen-
tered on the corresponding point of M′, respectively. Approximating the local
image transformation by translational displacement, the translational displace-
ment between fi and gi is δi = siδ. The displacement δi can be estimated
from the correlation peak position of the POC function ri between fi and gi as
mentioned in Sect. 2. The different rectified stereo image pairs, however, have
different translational displacements. For example, δi in V rect

R,i -Crect
i and δj in

V rect
R,j -Crect

j (j ∈ {0, · · · ,K − 1} − {i}) are not always equal. In other words, the
POC functions ri and rj have different correlation peak positions.

Addressing this problem, we convert the coordinate system of the POC func-
tions ri and rj into the same coordinate system by scaling the matching windows
in accordance with each normalized disparity. Let w be the unified size of the
matching window. The size of the matching windows of fi and gi is defined
by siw. Scaling the image signals fi and gi by 1/si, the size of the matching

windows is normalized to w, where we denote f̂i and ĝi as the scaled version
of the matching windows fi and gi, respectively. Hence, the correlation peak of
the POC function r̂i between f̂i and ĝi is located at δ. Similarly, for the recti-
fied stereo image pair V rect

R,j -Crect
j , the correlation peak of the POC function r̂j

between f̂j and ĝj is located at the same position δ, although the size of the
matching window, i.e., sjw, is different from that for V rect

R,i -Crect
i , i.e., siw.
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Fig. 4. Depth estimation using POC-based image matching.

Fig. 3 (a) shows the POC functions before disparity normalization. In this
case, the translational displacement δi between matching windows is different
for each view-point. Thus, the positions of the correlation peaks are also dif-
ferent. On the other hand, Fig. 3 (b) shows the POC functions after disparity
normalization. In this case, the translational displacement δ is the same for all
the viewpoints. Therefore, all the POC functions overlap at the same position.

Using disparity normalization makes it possible to integrate the POC func-
tions calculated from rectified stereo image pairs with different viewpoints. In
this paper, we employ the POC function r̂ave, which is the average of the POC
functions r̂i (i = 0, · · · ,K − 1), as the integrated POC functions.

3.3 Depth Estimation Using POC-Based Image Matching

We describe the depth estimation method using POC-based image matching
with two important techniques as described above. Fig. 4 shows the flow of the
proposed method. First, the initial position of the 3D point M′ is projected
onto the rectified stereo image pair V rect

R,i -Crect
i , and the coordinates on V rect

R,i

and Crect
i are denoted by mi = [ui, vi] and mC

i = [uCi , v
C
i ], respectively, where

i = 0, · · · ,K − 1. Next, the matching windows fi and gi extracted from V rect
R,i

centered at mi with the size siw × L and Crect
i centered at mC

i with the size
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siw × L, respectively. Note that we extract L lines of the matching window to
employ the technique averaging 1D POC functions to improve the peak-to-noise
ratio as described in Sect. 2. Then, we apply the disparity normalization to the
matching windows fi and gi and calculate the 1D POC function r̂i between f̂i
and ĝi. The correlation peak position of the 1D POC function r̂i may include a
significant error if 3D point M′ is not visible from the neighboring view Ci ∈ C
or the matching window is extracted from the boundary region of an object that
has multiple disparities. In this case, we observe that the correlation peak value
αi drops, since the local image transformation between the matching windows
cannot be approximated by translational displacement. To improve the accuracy
of depth estimation, the average POC function r̂ave is calculated from the POC
functions r̂i with αi > thcorr, where thcorr is a threshold. Finally, the correlation
peak position δ with sub-pixel accuracy is estimated by fitting the analytical
peak model of the POC function to r̂ave. From Eq. (11), Eq. (12), and δ, the
true position of the 3D point M is estimated by

M = Ri

 (ui − u0i)Bi/(si(d′ − δ))
(vi − v0i)Bi/(si(d′ − δ))

fiBi/(si(d
′ − δ))

 . (14)

To generate a depth map, we apply the POC-base image matching to a
plane-sweeping approach, and search the depth of each pixel in VR. Since the
POC-based image matching can estimate the depth corresponding to ±w/4 pixel
in the neighboring-view image, we search on the ray within the bounding box
with changing the depth of M′ in stpdf of siw/4 pixel in the stereo images. We
also apply the the coarse-to-fine strategy using image pyramids to the proposed
method described in the above. We first esimate the approximate depth in the
coarsest image layer, and then refine the depth in the subsequent image layers.

4 Experiments and Discussion

We evaluate the reconstruction accuracy and the computational cost of the con-
ventional method and the proposed method using the public multi-view stereo
image datasets [13]. In the experiments, we employ the famous method using
the plane-sweeping approach proposed by Goesele et al. [5] as the conventional
method.

4.1 Implementation

We describe the implementation notes for Goesele’s method and the proposed
methods.
Goesele’s method [5]

The reconstruction accuracy and the computational cost of Goesele’s method
significantly depends on the step size ∆Z of the depth. In the experiments, we
employ four variations of ∆Z such that the resolution of the disparity on the
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Reference view Neighboring views
VR C0 C1

Fig. 5. Examples of reference-view image VR and neighboring-view images C used in
the experiments (upper: Herz-Jesu-P8, lower: Fountain-P11).

widest-baseline stereo image is 1, 1/2, 1/5, and 1/10 pixels. The size of NCC-
based window matching is 17× 17 pixels. The threshold value for averaging the
NCC values calculated from stereo image pairs is 0.3.
Proposed method

The parameters for the proposed method used in the experiments are as
follows. The threshold thcorr is 0.3, the matching window size w is 32 pixel and
the number of POC functions L is 17. Note that the effective information of POC
function with 32 pixels×17 lines is limited to 17 pixels×17 line, since we apply a
Hanning widow with w/2-half width to the POC function to reduce the boundary
effect as described in Sect. 2. We also employ the coarse-to-fine strategy using
image pyramids. The numbers of layers are 2, 3, and 4 for 768×512, 1, 536×1, 024,
and 3, 072× 2, 048 pixels, respectively.

4.2 Evaluation of 3D Reconstruction Accuracy

We evaluate the 3D reconstruction accuracy using Herz-Jesu-P8 (8 images) and
Fountain-P11 (11 images), which are available in [13]. The datasets Herz-Jesu-
P8 and Fountain-P11 include the multi-view images with 3, 072× 2, 048 pixels,
camera parameters, bounding boxes, and the mesh model of the target object
that can be used as the ground truth. For each dataset, we generate depth maps
of all the view points using Goesele’s method and the proposed method. We use
two neighboring-view images C for one reference-view image VR. Fig. 5 shows
examples of VR and C used in the experiments. The performance is evaluated
for the three different image sizes : 768× 512, 1, 536× 1, 024, and 3, 072× 2, 048
pixels.

We evaluate the accuracy of 3D reconstruction by the error rate e defined by

e =
|Zcalculated − Zground truth|

Zground truth
× 100 [%], (15)

where Zcalculated and Zground truth denote the estimated depth and the true depth
obtained from the ground truth, respectively. Fig. 6 shows the reconstructed 3D
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Goesele, ΔZ=1/10 pixel Proposed method Ground truth

Fig. 6. Reconstruction results of 1, 536 × 1, 024-pixel images for each dataset (upper:
Herz-Jesu-P8, lower: Fountain-P11).
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Fig. 7. Inlier rate for each dataset (upper: Herz-Jesu-P8, lower: Fountain-P11).

point clouds of Goesele’s method and the proposed method for 1, 536 × 1, 024-
pixel images. Fig. 7 shows the inlier rates for changing threshold of the error
rates for each dataset. Fig. 8 shows the average error rates of inliers, where the
inlier is defined by a 3D point whose error rate is less than 1.0%.
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Fig. 8. Average error rates for each dataset (left: Herz-Jesu-P8, right: Fountain-P11).

For Goesele’s method, the error rates of the 3D point clouds are small when
the step size ∆Z is sufficiently small. For the proposed method, we observe
that the reconstructed 3D points are concentrated on smaller error rates than in
Goesele’s method with ∆Z = 1/10 pixel. We also confirm this result from the av-
erage error rates in Fig. 8. For Fountain-P11, the proposed method can estimate
more accurate depth than Goesele’s method for all the image sizes. In Goesele’s
method, to estimate the accurate depth, the sub-pixel displacement between the
matching windows is represented by image interpolation. On the other hand, the
proposed method employs the POC-based image matching, which can estimate
the accurate sub-pixel displacement between the matching windows by fitting
the analytical correlation peak model of the POC function.

As is observed in the above experiments, the proposed method exhibits higher
reconstruction accuracy than Goesele’s method.

4.3 Evaluation of Computational Cost

We evaluate the computational cost to estimate the depth of one point on the
reference-view image for Goesele’s method and the proposed method. When
using the w-pixel matching window, the proposed method can estimate the dis-
placement within ±w/4 pixels for one window matching. In Goesele’s method,
we also estimate the displacement within ±w/4 pixels using NCC-based im-
age matching. Table 1 shows the computational cost for each method. Goesele’s
method with the small step size ∆Z requires high computational cost. On the
other hand, the proposed method requires low computational cost that is com-
parable to that for Goesele’s method with ∆Z = 1 pixel or ∆Z = 1/2 pixel.
As described in Sect. 4.2, the reconstruction accuracy of the proposed method
is higher than that of Goesele’s method with ∆Z = 1/10 pixel. Although the
computational cost for Goesele’s method can be reduced when ∆Z is large, the
reconstruction accuracy drops significantly. Compared with Goesele’s method,
the proposed method exhibits efficient 3D reconstruction from multi-view images
in terms of the reconstruction accuracy and the computational cost.
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Table 1. Computational cost to estimate the depth of one point on the reference-view
image for each method.

Additions Multiplications Divisions Square roots

Goesele, ∆Z = 1 pixel 75,140 31,246 578 578
Goesele, ∆Z = 1/2 pixel 150,280 62,492 1,156 1,156
Goesele, ∆Z = 1/5 pixel 357,700 156,230 2,890 2,890
Goesele, ∆Z = 1/10 pixel 751,400 312,460 5,780 5,780
Proposed method 40,000 34,496 2,176 1,088

5 Conclusion

This paper has proposed an efficient image matching method for Multi-View
Stereo (MVS) using Phase-Only Correlation (POC). The proposed method with
normalizing disparity and integrating POC functions can estimate the depth
from the correlation function obtained only by one window matching. Also, the
reconstruction accuracy of the proposed method is higher than that of NCC-
based image matching, since POC-based image matching can estimate the ac-
curate sub-pixel translational displacement between two windows by fitting the
analytical correlation peak model of the POC function. Through a set of exper-
iments using the public multi-view stereo datasets, we have demonstrated that
the proposed method performs better in terms of accuracy and computational
cost than Goesele’s method. In future work, we will improve the accuracy of the
proposed method to consider the normal vectors of 3D point and develop an
MVS algorithm using the proposed method.
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