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Abstract Magnification calibration is a crucial task for the
electron microscope to achieve accurate measurement of the
target object. In general, magnification calibration is per-
formed to obtain the correspondence between the scale of
the electron microscope image and the actual size of the
target object using the standard calibration samples. How-
ever, the current magnification calibration method mentioned
above may include a maximum of 5 % scale error, since an
alternative method has not yet been proposed. Addressing
this problem, this paper proposes an image-based magnifi-
cation calibration method for the electron microscope. The
proposed method employs a multi-stage scale estimation
approach using phase-based correspondence matching. Con-
sider a sequence of microscope images of the same target
object, where the image magnification is gradually increased
so that the final image has a very large scale factor S (e.g.,
S = 1,000) with respect to the initial image. The problem
considered in this paper is to estimate the overall scale factor
S of the given image sequence. The proposed scale estima-
tion method provides a new methodology for high-accuracy
magnification calibration of the electron microscope. This
paper also proposes a quantitative performance evaluation
method of scale estimation algorithms using Mandelbrot
images which are precisely scale-controlled images. Exper-
imental evaluation using Mandelbrot images shows that the
proposed scale estimation algorithm can estimate the overall
scale factor S = 1,000 with approximately 0.1 % scale error.
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Also, a set of experiments using image sequences taken by an
actual scanning transmission electron microscope (STEM)
demonstrates that the proposed method is more effective for
magnification calibration of a STEM compared with a con-
ventional method.
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1 Introduction

Electron microscopes can be used to measure and observe
cells, cell organelle, the fine structure of biological mem-
branes, atoms, etc., and have a 1,000 times greater resolution
than light microscopes. To achieve accurate measurement
and observation of the object using electron microscope
images, the correspondence between the scale of the elec-
tron microscope image and the actual size of the object must
be obtained. This task is known as magnification calibration
of the electron microscope. The high-accuracy magnification
calibration method is required for accurate measurement and
observation of the object.

In general, magnification calibration is performed using
standard calibration samples containing line, grating or
spherical patterns with known spacing [1,4,7,12,13]. For
example, microscopic glass spheres [4], polystyrene latex
spheres [1], polyoma and a spherical animal virus [12], crys-
tals of bovine liver catalase [7], monodisperse gold nanoparti-
cles [13], carbon gratings and carbon graphites are used as the
internal or external standard calibration samples. The inter-
nal standard calibration sample such as an atomic pattern of
the target object is included in the target object and is used to
simultaneously calibrate the magnification and measure the
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target object, while the external one such as a grating pattern
is not included in the target object and is used to calibrate the
magnification in advance. In the basic calibration method, a
carbon grating is used in the low magnification setting (i.e.,
μm order), and an atomic lattice of the target object is used
in the high magnification setting (i.e., nm order). When we
focus on the magnification range between these two magni-
fication settings, there are no applicable standard materials.
Hence, it is difficult to perform reliable magnification cali-
bration of the electron microscope over this range, and the
current magnification calibration method using the standard
calibration samples may include a maximum of 5 % scale
error [11]. In addition, an alternative method has not yet been
proposed.

Addressing this problem, we propose a novel framework
of magnification calibration using a multi-stage scale estima-
tion approach. We consider a sequence of microscope images
of the same target object, where the image magnification is
gradually increased so that the final image has a very large
scale factor S (e.g., S = 1,000) with respect to the initial
image. The goal of this framework is to estimate the overall
scale factor S between the image captured with the correct
magnification setting and the image captured with the uncal-
ibrated magnification setting. Since the overall scale factor S
is obtained by the product of a sequence of estimated relative
scale factors, a high-accuracy scale estimation algorithm for
estimating the relative scale factors between adjacent images
is indispensable. Moreover, in high-magnification range over
× 100,000, the geometric transformation between sequential
images is represented by not only scaling but also translation,
rotation and sometimes perspective distortion due to slight
movement of the object during image acquisition, which is
known as drift distortion. Hence, a scale estimation algo-
rithm has to be robust against geometric transformation.
To achieve high-accuracy magnification calibration of the
electron microscope, we propose a high-accuracy scale esti-
mation algorithm using correspondence matching based on
phase-only correlation (POC). Phase-based correspondence
matching [10] is an efficient method of sub-pixel correspon-
dence matching, which employs (1) a coarse-to-fine strategy
using image pyramids for robust correspondence search and
(2) a POC-based sub-pixel image matching technique for
finding a pair of corresponding points with sub-pixel dis-
placement accuracy.

In addition, to evaluate the accuracy of scale estimation
algorithms, we propose a quantitative performance evalua-
tion method of scale estimation algorithms using Mandel-
brot images. The Mandelbrot set [3] is a mathematical set
of points having distinctive boundaries and two-dimensional
(2D) fractal-like shape. Considering the Mandelbrot set as
2D signals defined in the continuous space, we can generate
images transformed with arbitrary parameters without inter-
polating pixels, since the Mandelbrot set has infinite reso-

lution. The use of Mandelbrot images makes it possible to
generate the image sequence with a very large scale factor S
(e.g., S = 1,000).

Experimental evaluation using Mandelbrot images as
precisely scale-controlled images shows that the proposed
scale estimation algorithm can estimate the scale factor
with approximately 0.1 % scale accuracy from the image
sequences with the overall scale factor S = 1,000 and±10 %
of the initial scale errors. This paper also describes an appli-
cation of the proposed algorithm to the magnification calibra-
tion of an actual scanning transmission electron microscope
(STEM).

The main contributions of this work are summarized as
follows:

1. A novel framework of magnification calibration using a
multi-stage scale estimation approach for electron micro-
scopes is proposed. The proposed framework allows us
to perform magnification calibration of electron micro-
scopes within the magnification range for which no
applicable standard materials exist.

2. A scale estimation algorithm using the phase-based cor-
respondence matching technique is proposed. The pro-
posed algorithm can estimate the overall scale factor
S = 1,000 with approximately 0.1 % scale error.

3. A quantitative performance evaluation method using
Mandelbrot images for scale estimation algorithms is
proposed. Since the proposed method generates the
image sequences whose scale factors are precisely con-
trolled, we can correctly evaluate the accuracy of scale
estimation algorithms even for the overall scale factor
S = 1,000.

The rest of the paper is organized as follows: Section 2
describes the proposed image-based magnification calibra-
tion framework for electron microscopes. Section 3 describes
the fundamentals of POC, the phase-based correspondence
matching technique and the proposed scale estimation algo-
rithm. Section 4 describes the use of Mandelbrot image for
quantitative evaluation of scale estimation algorithms. Sec-
tion 5 demonstrates a set of experiments for evaluating esti-
mation accuracy of the proposed algorithm using Mandelbrot
images and the images taken by an actual STEM. Section 6
ends with some concluding remarks.

2 Image-based magnification calibration

In this section, we describe a novel framework of magnifica-
tion calibration using a multi-stage scale estimation approach
for electron microscopes. Figure 1 shows the flow of our pro-
posed framework.

We assume that the electron microscope has already
been calibrated for a certain magnification setting mtrue

0 (>1)
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Fig. 1 Scheme of the proposed image-based magnification calibra-
tion: It is hard to estimate a very large overall scale factor S between
the initial image h0 and target image hT directly. The proposed frame-
work estimates the overall scale factor S through a multi-step approach
as S = s1 × s2 × s3 × · · · × sT , where we employ a set of multiple

images between h0 and hT with reasonably smaller relative scale fac-
tors si (i = 1, 2, 3, . . . , T ). We can calibrate the magnification of the
target image ht as m = mtrue

0 × S by estimating the accurate relative
scale factors si

using standard calibration samples, and hence the magnifica-
tion parameter mtrue

0 has been adjusted correctly. The problem
considered here is to calibrate the microscope for a higher
magnification setting, say m (>mtrue

0 ), for which no standard
calibration materials exist. Our framework is to estimate the
scale change S between the microscope image h0 captured
with the correct magnification setting mtrue

0 and the target
image hT captured with the uncalibrated magnification set-
ting mT . Let S (>1) be the scale factor of the microscope
image hT with respect to the image h0. We can estimate the
true magnification for the setting m (=mtrue

T ) as S × mtrue
0 .

Thus, the goal of our framework is to perform calibration for
magnification m on the basis of image analysis without using
standard calibration materials.

A major problem of this framework is the difficulty of
calibration for higher magnification setting m (>> mtrue

0 ).
For example, when S = m/mtrue

0 = 1,000, we cannot esti-
mate the image scale factor S directly in practice. Addressing
this problem, we estimate the overall scale factor S through a
multi-step approach as S = s1×s2×s3×· · ·×sT , where we
employ a set of multiple images between h0 and hT with rea-
sonably smaller relative scale factors si (i = 1, 2, 3, . . . , T ).
Hence, high-accuracy scale estimation for the relative scale
factor si between ht−1 and ht is indispensable to reduce
the multiplicative error accumulation including in the over-
all scale factor S. In the following section, we describe a
high-accuracy scale estimation algorithm using phase-based
correspondence matching.

3 Scale estimation algorithm

A number of image matching algorithms to estimate transfor-
mation parameters have been proposed. One of the famous

image matching algorithms is to use scale invariant feature
transform (SIFT)-based matching [6]. In the case of computer
vision applications, SIFT-like feature-based matching algo-
rithms exhibit sufficient accuracy to estimate transformation
parameters [8]. However, for the purpose of scale estima-
tion in microscope images, SIFT-like feature-based match-
ing algorithms are not always suitable, since only one-pixel
error of keypoint localization may lead to a significant error
in scale estimation. Hence, for the cases considered in this
paper, area-based image matching algorithms are more suit-
able than the feature-based image matching algorithms. The
area-based image matching algorithm using POC is one of
the most accurate algorithms to estimate transformation para-
meters such as translational displacement, rotation angle and
scale factor [5,9]. POC is an image matching technique using
the phase components of 2D Discrete Fourier Transforms
(DFTs) of given images. To combine the POC technique and
the Fourier–Mellin transform, we can estimate a scale factor
between images [2,9]. Since this approach estimates a scale
factor from the amplitude components of 2D DFTs of images,
the low-quality images due to blur or noise, e.g., microscope
images in high-magnification settings, result in a reduction
of the accuracy of scale estimation.

To achieve accurate scale estimation of electron micro-
scope images, the proposed scale estimation algorithm
obtains dense correspondence between images using a corre-
spondence matching technique, and then estimates the scale
factor from the correspondence. The key idea of the proposed
algorithm is to use phase-based correspondence matching
[10], which employs (1) a coarse-to-fine strategy using image
pyramids for robust correspondence search and (2) a POC-
based sub-pixel image matching technique for finding a pair
of corresponding points with sub-pixel displacement accu-
racy. In the following, we describe the details of the pro-
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posed scale estimation algorithm. First, we briefly introduce
fundamentals of POC, which allows us to estimate a sub-pixel
displacement and evaluate a similarity between two images.
Next, we describe the correspondence matching technique
using POC. Then, we describe the proposed scale estimation
algorithm using phase-based correspondence matching.

3.1 Fundamentals of phase-only correlation

POC-based image matching employs a POC function
between two images which is defined by a correlation
function calculated only from phase components in 2D
DFTs of the given images. Consider two N1×N2 images,
f (n1, n2) and g(n1, n2), where we assume that the index
ranges are n1 = −M1, . . . , M1 (M1 > 0) and n2 =
−M2, . . . , M2 (M2 > 0), and hence N1 = 2M1 + 1 and
N2 = 2M2 + 1. Note that we assume here the sign sym-
metric index ranges {−M1, . . . , M1} and {−M2, . . . , M2}
for mathematical simplicity. The discussion could be easily
generalized to non-negative index ranges with power-of-two
image size. Let F(k1, k2) and G(k1, k2) denote the 2D DFTs
of the two images. F(k1, k2) and G(k1, k2) are given by

F(k1, k2) =
M1∑

n1=−M1

M2∑

n2=−M2

f (n1, n2)W k1n1
N1

W k2n2
N2

= AF (k1, k2)e
jθF (k1,k2), (1)

G(k1, k2) =
M1∑

n1=−M1

M2∑

n2=−M2

g(n1, n2)W k1n1
N1

W k2n2
N2

= AG(k1, k2)e
jθG (k1,k2), (2)

where k1 = −M1, . . . , M1, k2 = −M2, . . . , M2, WN1 =
e
− j 2π

N1 , and WN2 = e
− j 2π

N2 . AF (k1, k2) and AG(k1, k2) are
amplitude components, and θF (k1, k2) and θG(k1, k2) are
phase components. The normalized cross-power spectrum
RFG(k1, k2) between F(k1, k2) and G(k1, k2) is given by

RFG(k1, k2) = F(k1, k2)G(k1, k2)

|F(k1, k2)G(k1, k2)|
= e jθ(k1,k2), (3)

where G(k1, k2) denotes the complex conjugate of G(k1, k2)

and θ(k1, k2) denotes the phase difference θF (k1, k2) −
θG(k1, k2). The POC function r f g(n1, n2) is the 2D Inverse
DFT of RFG(k1, k2) and is given by

r f g(n1, n2) = 1

N1 N2

M1∑

k1=−M1

M2∑

k2=−M2

RFG(k1, k2)

×W−k1n1
N1

W−k2n2
N2

. (4)

When the two images are similar, their POC function
gives a distinct sharp peak. When f (n1, n2) = g(n1, n2),

the POC function r f g becomes the Kronecker delta func-
tion. When the two images are not similar, the peak drops
significantly. The height of the peak can be used as a good
similarity measure for image matching, and the location of
the peak shows the translational displacement between the
two images. Other important properties of POC are that the
POC-based image matching is not influenced by image shift
or brightness change, and it is highly robust against noise.

In our previous work [9], we have proposed techniques
to improve the accuracy of POC-based image matching: (1)
the function fitting technique for high-accuracy estimation of
peak position, (2) the windowing technique to reduce bound-
ary effects and (3) the spectral weighting technique to reduce
aliasing and noise effects. Technique (1) is to find the loca-
tion of the peak that may exist between pixels by fitting the
closed-form peak model of the POC function. Technique (2)
is to reduce the effects of discontinuity at the image bor-
der in the 2D DFT computation by applying a 2D window
function to the image. Technique (3) is to eliminate the high
frequency components having low reliability by applying
a low-pass-type weighting function to RFG(k1, k2) in the
frequency domain. The use of POC-based image matching
with the above three techniques makes it possible to achieve
accurate and robust estimation of translational displacement
between images.

3.2 Phase-based correspondence matching

To perform accurate scale estimation, we employ the sub-
pixel correspondence matching technique using POC, which
employs (1) a coarse-to-fine strategy using image pyra-
mids for robust correspondence search and (2) a sub-pixel
translational displacement estimation method using POC for
finding a pair of corresponding points with sub-pixel dis-
placement accuracy. The flow of the phase-based correspon-
dence matching technique is illustrated in Fig. 2. Consider
two images: the reference image I (n1, n2) and the input
image J (n1, n2). Let p be a coordinate vector of a refer-
ence pixel in I (n1, n2). The problem of sub-pixel corre-
spondence search is to find a real-number coordinate vector
q in J (n1, n2) that corresponds to the reference pixel p in
I (n1, n2). We briefly explain the procedure as follows.

Step 1 For l = 1, 2, . . . , lmax−1, create the lth layer images
I l(n1, n2) and J l(n1, n2), i.e., coarser versions of I 0(n1, n2)

and J 0(n1, n2), recursively as follows:

I l(n1, n2) = 1

4

1∑

i1=0

1∑

i2=0

I l−1(2n1 + i1, 2n2 + i2),

J l(n1, n2) = 1

4

1∑

i1=0

1∑

i2=0

J l−1(2n1 + i1, 2n2 + i2).
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Fig. 2 Flow of the phase-based correspondence matching technique:
We put the reference point p on the reference image I (n1, n2) and
find its corresponding point q on the input image J (n1, n2) as follows.
Create lth layer images I l (n1, n2) and J l (n1, n2) recursively. Calculate
pl corresponding to p0. Assume plmax = qlmax in the coarsest layer. For
the lth layer images, extract sub-images f l(n1, n2) and gl (n1, n2) with
their centers on pl and 2ql+1, respectively. Estimate the displacement
δl between f l (n1, n2) and gl (n1, n2) with pixel accuracy using POC-
based image matching and obtain the lth layer corresponding point as
ql = 2ql+1+δl . Repeat the above procedure while l ≥ 0. In the original
images I 0(n1, n2) and J 0(n1, n2), estimate the displacement δ between
two sub-images with their centers on pl and 2ql+1. Finally, obtain the
corresponding point as q = q0 + δ

In this paper, we employ lmax = 3.

Step 2 For every layer l = 1, 2, . . . , lmax, calculate the coor-
dinate pl = (pl

1, pl
2) corresponding to the original reference

point p0 recursively as follows:

pl = ⌊ 1
2 pl−1

⌋ =
(⌊

1
2 pl−1

1

⌋
,
⌊

1
2 pl−1

2

⌋)
, (5)

where �z� denotes the operation to round the element of z to
the nearest integer towards minus infinity.

Step 3 We assume that qlmax = plmax in the coarsest layer. Let
l = lmax − 1.

Step 4 From the lth layer images I l(n1, n2) and J l(n1, n2),
extract two sub-images (or local image blocks) f l(n1, n2)

and gl(n1, n2) with their centers on pl and 2ql+1, respec-
tively. The size of image blocks is W ×W pixels. Note that
W is determined depending on the image size. Consider the
images with 640×480 pixels and lmax = 3. The image size in
the (lmax−1)th layer is 160×120 pixels. W should be smaller
than 120 pixels so as not to extract the sub-images from out-
side of the image, and also be power of two for fast DFT
computation. The candidates for W are 32 and 64 pixels to
estimate accurate displacement between the two sub-images
using POC-based image matching. From the viewpoint of
computation time, we employ W = 32 in this paper. If the
image size is over 1,000× 1,000 pixels, it is better to select
W = 64.

Step 5 Estimate the displacement between f l(n1, n2) and
gl(n1, n2) with pixel accuracy using POC-based image

matching. Note that, to reduce the computational cost, POC-
based image matching with pixel-accuracy is used to estimate
the displacement in this step, since f l(n1, n2) and gl(n1, n2)

are the coarser versions of the original images f 0(n1, n2)

and g0(n1, n2). Let the estimated displacement vector be δl .
The lth layer correspondence ql is determined by

ql = 2ql+1 + δl . (6)

Step 6 Decrement the counter by 1 as l = l − 1 and repeat
the procedure from Step 4 to Step 6 while l ≥ 0.

Step 7 From the original images I 0(n1, n2) and J 0(n1, n2),
extract two image blocks with their centers on p0 and q0,
respectively. Estimate the displacement between the two
blocks with sub-pixel accuracy using POC-based image
matching. Let the estimated displacement vector with sub-
pixel accuracy be denoted by δ = (δ1, δ2). Update the cor-
responding point as

q = q0 + δ. (7)

In general, it is important to set the reference point p
on the area having rich texture to obtain its accurate cor-
responding point q from the input image J (n1, n2). Since
the peak value of the POC function between the local block
images is used as a measure of correspondence reliability [9],
a lot of reference points p are placed on the reference image
I (n1, n2) and their corresponding points q on the input image
J (n1, n2) are found using the phase-based correspondence
matching technique described in the above. When the peak
value of the POC function between the local image blocks is
below a threshold, the corresponding point pair is regarded
as an outlier. From our preliminary investigation, the thresh-
old is selected within 0.3–0.5 to obtain accurate correspond-
ing point pairs. Hence, we employ the threshold as 0.4 in
this paper. Also, we empirically determine that the refer-
ence points are set on the reference image with a spacing of
10 pixels.

3.3 Scale estimation algorithm using phase-based
correspondence matching

We present a scale estimation algorithm using phase-based
correspondence matching for electron microscope images.
As mentioned in Sect. 2, the problem considered here is to
estimate the precise relative scale factor st (t = i) between
the two neighboring images ht (n1, n2) and ht−1(n1, n2) of
the image sequence as shown in Fig. 3. Let ht (n1, n2) and
ht−1(n1, n2) be the high-magnification image with the mag-
nification mt and the low-magnification image with the mag-
nification mt−1, respectively. Note that the magnification mt

and mt−1 are read from the electron microscope. The relative
scale factor st can be written as

st = s̃t +Δst , (8)
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Fig. 3 Flow diagram of estimating the relative scale factor st between
the two neighboring images ht and ht−1: From the magnification
mt of the high-magnification image ht (n1, n2) and mt−1 of the low-
magnification image ht−1(n1, n2), the initial scale factor s̃t is defined
by s̃t = mt/mt−1. The initial scale factor s̃t includes the error between
the true and initial relative scale factors denoted by Δst , i.e., the error
including in the magnification read from the electron microscope. We
need to estimate Δst with high accuracy using a scale estimation algo-
rithm to obtain the precise relative scale factor st defined by st = s̃t+Δst

where s̃t indicates the initial scale factor s̃t defined by s̃t =
mt/mt−1 and Δst indicates the error between the true and
initial relative scale factors, i.e., the error included in the mag-
nification read from the electron microscope which may be a
maximum of 5 % [11]. Hence, we need to estimate Δst with
high accuracy to obtain the precise relative scale factor st .
In the proposed algorithm, we consider that ht−1(n1, n2) is a
displaced, rotated and scaled version of the image ht (n1, n2),
since the electron microscope image may be deformed in the
image acquisition process. In high-magnification range over
×100,000, the geometric transformation between the images
is represented by not only scaling but also translation, rota-
tion and sometimes perspective distortion due to slight move-
ment of the object during image acquisition, which is known
as drift distortion. Hence, the proposed algorithm estimates
the relative scale factor st in the light of the translational dis-
placement (δt1, δt2) and rotation angle θt between images.
Also, we employ the iterative procedure to estimate the rela-
tive scale factor st between ht (n1, n2) and ht−1(n1, n2). If the
initial relative scale factor s̃t includes a large error, one-time
correspondence matching may not be enough to obtain the
accurate relative scale factor st . In the proposed algorithm,
the parameters st , θt and (δt1, δt2) are iteratively estimated.
The following is the detailed procedure of the proposed algo-
rithm (Fig. 4).

Input:

• High-magnification image ht (n1, n2) with the magnifi-
cation mt read from the electron microscope
• Low-magnification image ht−1(n1, n2) with the magni-

fication mt−1 read from the electron microscope

Fig. 4 Flow diagram of the proposed scale estimation algorithm: If the
initial relative scale factor s̃t includes a large error, one-time correspon-
dence matching may not be enough to obtain the accurate relative scale
factor st . In the proposed algorithm, the parameters such as the relative
scale factor st , the relative rotation angle θt and the relative translation
(δt1, δt2) between ht (n1, n2) and ht−1(n1, n2) are iteratively estimated
so as to minimize errors in scale factor Δst , rotation angle Δθt and
translation (Δδt1,Δδt2)

• Initial value s̃t = mt/mt−1 of the relative scale factor st

between ht (n1, n2) and ht−1(n1, n2)

Output:

• Relative scale factor st between ht (n1, n2) and ht−1

(n1, n2).

Step 1 Set the initial transformation parameters, i.e., the
translational displacement (δt1, δt2), the rotation angle θt and
the scale factor st , as follows:

(δt1, δt2)← (0, 0),

θt ← 0,

st ← s̃t .

123



Image-based magnification calibration 191

Step 2 Transform ht−1(n1, n2) by (δt1, δt2), θt and st , and
extract the common region h′t−1(n1, n2) associated with
ht (n1, n2).
Step 3 Obtain the correspondence between ht (n1, n2) and
h′t−1(n1, n2) using the phase-based correspondence match-
ing technique described in Sect. 3.2. In this paper, we set
the reference points on ht (n1, n2) with a spacing of 10 pix-
els. When the peak value of POC function between local
block images is below a certain threshold, the point pair is
regarded as an outlier, and is removed. In this paper, the
threshold value is 0.4. Let the reference points be U =
(u1, u2, . . . , uK ) for ht (n1, n2) and the corresponding points
be V = (v1, v2, . . . , vK ) for h′t−1(n1, n2), where K is the
number of corresponding point pairs.

Step 4 Estimate the scale error Δst using the correspon-
dence between ht (n1, n2) and h′t−1(n1, n2). In this paper,
we employ the similarity transformation model to estimate
Δst . The model is defined as follows:

v = Δst

[
cos Δθt − sin Δθt

sin Δθt cos Δθt

]
u+

[
Δδt1

Δδt2

]
, (9)

where Δθt is a rotation angle and (Δδt1,Δδt2) is a transla-
tional displacement. Substituting U and V into Eq. (9), we
can estimate the transformation parameters by solving a set
of linear simultaneous equations as the linear least-squares
problem (For more details, refer to Appendix A in Ref. [8]).

Step 5 Update the transformation parameters as follows:

(δt1, δt2)← (δt1 +Δδt1, δt2 +Δδt2),

θt ← θt +Δθt ,

st ← st ×Δst ,

where “×” indicates regular multiplication.

Step 6 Repeat the procedure from Step 2 to Step 5 until st is
not updated. In this paper, we repeat the procedure 3 times.

Step 7 Obtain the relative scale factor st .

For every neighboring image pair, the precise relative scale
factor si (i = 1, . . . , T ) is estimated using the above scale
estimation algorithm, and then the overall scale factor of the
image sequence is obtained by S = s1× s2×· · · sT . Finally,
we can calibrate the magnification of the image hT (n1, n2)

by m = mtrue
0 × S.

4 Mandelbrot image for quantitative performance
evaluation of scale estimation

This section describes the proposed performance evaluation
method for scale estimation. The reference images trans-
formed with known parameters have to be used to evaluate the
accuracy of image registration algorithms. For example, to
obtain reference images with sub-pixel translation, we apply
a lowpass filter to a high-resolution image and downsam-
ple shifted versions of the image. Using appropriate down-
sampling rates, we can generate the images having sub-pixel
translation. On the other hand, pixel interpolation is required
to generate the images with rotation and scaling. We can also
obtain translated, rotated and scaled images, where an object
is mounted on a micro stage which allows precise alignment
of the object position and is taken by a camera. In this case,
we need a precise micro stage and to carefully operate the
camera and stage to reduce the error associated with human
and device. Particularly, it is difficult to generate the image
having a very large scale factor S, e.g., S > 1,000.

In this paper, we propose a performance evaluation
method using the Mandelbrot set [3] for scale estimation
algorithms. Figure 5 shows an example of the Mandelbrot
set. The Mandelbrot set is a set of points in the complex
plane having elaborate boundaries, where the little copies of
the Mandelbrot set are connected to the main body of the
set and are all slightly different. Considering the Mandelbrot
set as 2D signals defined in the continuous space, we can
generate the images transformed with arbitrary parameters

Fig. 5 The whole structure of
the Mandelbrot set (left) and
examples of Mandelbrot images
(right) generated by changing
the image centers (c1, c2) and
the scale parameter k, where A,
B and C indicate the parameter
set used to generate each
Mandelbrot image
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without interpolating pixels, since the Mandelbrot set has
infinite resolution.

We describe a Mandelbrot image generation procedure
in the following. The Mandelbrot set defined as the set of
complex values of x1 + j x2 is obtained from the following
quadratic recurrence equation as follows:

zn+1 = z2
n + x1 + j x2, (10)

where x1 and x2 are real-number coordinates, and the initial
condition is z0 = 0. In nature, the Mandelbrot set is the set
of all points in the complex plain x1 + j x2 which do not
diverge under n → ∞. To reduce the computational cost,
we calculate Eq. (10) up to n = U , where U = 1,000 in this
paper. If |zn| ≥ 2 (n ≤ U ), the intensity value hc(x1, x2)

for (x1, x2) in the complex plain is n. If |zn| ≤ 2 until
n = U , the intensity value hc(x1, x2) is U . Thus, we can
obtain the Mandelbrot set as hc(x1, x2). Note that we employ
h′c(x1, x2) = log{hc(x1, x2) + 1} instead of hc(x1, x2) for
intensity compression.

The Mandelbrot set h′c(x1, x2) can be considered as a
2D image defined in the continuous space. We now sam-
ple the continuous Mandelbrot set h′c(x1, x2) at the sampling
intervals T1 and T2 to have a Mandelbrot image h(n1, n2).
Let (c1, c2) be image centers and (n1, n2) be discrete space
indices, we have

h(n1, n2) = h′c(x1 − c1, x2 − c2)|x1=n1T1,x2=n2T2 , (11)

where n1 = −M1, . . . , M1 and n2 = −M2, . . . , M2.
Figure 5 shows examples of Mandelbrot images generated
by changing image centers (c1, c2) and the scale parameter
k. In these figures, we employ the three patterns as follows:

A : D = 1.0× 10−11,

c1 = −0.25272149866535,

c2 = 0.84996890117939,

B : D = 1.0× 10−7,

c1 = −0.64868627955000,

c2 = 0.48617790435000,

C : D = 5.0× 10−6,

c1 = 0.28950114650000,

c2 = 0.01346307350000,

where T1 = T2 = D × 10k (k = 0, 1, 2) and M1 = M2 =
200 (i.e., image size: 401×401 pixels). We can obtain various
versions of Mandelbrot images by changing the viewpoint
of the Mandelbrot set as shown in Fig. 5. The generated
Mandelbrot images contain aliasing, which prevents accurate
performance evaluation of image registration algorithms. To
reduce the effect of aliasing, we apply a lowpass filter to the
Mandelbrot image.

5 Experiments and discussion

In this section, we describe a set of experiments for evaluating
the accuracy of the proposed scale estimation algorithm using
the image sequence ht as shown in Fig. 1.

We compare the three scale estimation algorithms: (1)
the conventional POC-based scale estimation algorithm
[2,9] denoted by “POC,” (2) algorithm (1) with the pro-
posed iterative approach denoted by “Iterative POC” and
(3) the proposed algorithm denoted by “Proposed.” Algo-
rithm (1) applies the Fourier–Mellin transform to the images,
estimates the translational displacement between the trans-
formed images using POC, and obtains the relative scale fac-
tor si . Algorithm (2) is an improved version of algorithm
(1). We apply the proposed iterative approach as shown in
Fig. 4 to algorithm (1), where Steps 3 and 4 in the proposed
approach are replaced by algorithm (1). Algorithm (3) is our
proposed algorithm described in Sect. 3.3.

In this experiment, we use two types of image sequences:
the Mandelbrot images and the actual electron microscope
images. We describe performance evaluation using Mandel-
brot images and then present the experiments using the elec-
tron microscope images.

5.1 Performance evaluation using mandelbrot images

We evaluate the accuracy of the scale estimation algorithms
using Mandelbrot images. As described in Sect. 4, the use
of Mandelbrot images makes it possible to generate the pre-
cisely scale-controlled image sequence. In this experiment,
we use Mandelbrot image sequences having the same rela-

tive scale factors strue
i = 1,000

1
T and the overall scale factor

Strue = 1,000. In our experiment, we employ the number
of stages T = 5–20 to evaluate the stability of the scale esti-
mation algorithms by changing the relative scale factor strue

i .
Hence, the maximum relative scale factor (T = 5) is 3.98,
while the minimum relative scale factor (T = 20) is 1.41. We
estimate the relative scale factor si (i = 1, . . . , T ) using the
scale estimation algorithms, and calculate the overall scale
factor S = ∏T

i=1 si . To compare the estimated overall scale
factor S and the true overall scale factor Strue, the error [%]
in estimating the overall scale factor S, which is denoted by
ET , is given by

ET =
∣∣∣∣

S

Strue
− 1

∣∣∣∣× 100. (12)

In this experiment, we use three different types of image
sequences: Type A, Type B, and Type C as shown in Fig. 5.

First, we evaluate the estimation accuracy of the algo-
rithms when the number of stages T is changed. The initial
value s̃i is set to s̃i = strue

i × 1.05 in this experiment, that is,
the initial relative scale factor s̃i includes 5 % scale error to
consider the practical situation of the electron microscope.
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(a)

(b)

(c)

Fig. 6 Experimental results for each type of the Mandelbrot image
sequence: a Type A, b Type B and c Type C. The POC algorithm cannot
estimate the scale factor in T < 10, since the common region between
the images is too small to estimate the scale factor. The estimation errors
of the iterative POC algorithm and the proposed algorithm are lower
than 0.5 % independent of the number of stages T

Figure 6 shows experimental results for each type of the Man-
delbrot image sequence. The scale estimation error ET of
POC is larger than that of other algorithms. Especially, in the

Table 1 RMS errors of ET (T = 5–20) for each type of the Mandelbrot
image sequence

Type A Type B Type C

POC – – –

Iterative POC 0.0885 % 0.1747 % 0.1418 %

Proposed 0.0936 % 0.1041 % 0.0965 %

The RMS errors of POC cannot be calculated, since POC fails to esti-
mate the relative scale factor si of the image sequence with T < 10
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Fig. 7 Scale estimation error ET when the initial scale error Δs̃ is
changed. ET for POC is constant, since POC dose not need an initial
scale factor s̃i to estimate the scale factor si

case of T < 10, i.e., strue
i > 2, the POC algorithm cannot

estimate the scale factor, since the common region between
the images is too small to estimate the scale factor using POC.
The estimation errors of the iterative POC algorithm and the
proposed algorithm are lower than 0.5 % independent of the
number of stages T . To compare the accuracy of the itera-
tive POC and the proposed algorithms, we also evaluate the
Root Mean Square (RMS) of ET (T = 5–20) which indicates
the inherent error of the scale estimation algorithms. Table 1
shows the RMS errors of the three algorithms for each type.
The errors are around 0.15 % when using the iterative POC
algorithm, while the errors are around 0.1 % when using the
proposed algorithm.

Next, we evaluate the estimation accuracy of the algo-
rithms when the initial scale error Δs̃ is changed. In the
first experiment described above, we set the initial scale
error Δs̃ = 0.05 to perform the experiment under prac-
tical situation of the electron microscope. In this (second)
experiment, the initial scale error Δs̃ is changed from −10
to 10 % with a spacing of 2 % to evaluate the robustness
of the scale estimation algorithms against the initial scale
error Δs̃i . Hence, the initial relative scale factor s̃i is set to
s̃i = strue

i × (1 + Δs̃), that is, the initial relative scale fac-
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Fig. 8 Examples of electron
microscope images of carbon
graphite, where TE indicates the
image formed by the
transmission electrons, and ZC
indicates the image formed by
high-angle scattered electrons.
We take 41 images, i.e., T = 40
(t = 0− 40), while changing
the magnification range from
×7,000 to ×2,000,000. The
number on the upper left of each
image indicates the image
number t
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Fig. 9 Examples of electron
microscope images of carbon
grating, where TE indicates the
image formed by the
transmission electrons, and ZC
indicates the image formed by
high-angle scattered electrons.
We take 41 images, i.e., T = 40
(t = 0− 40), while changing
the magnification range from
×7,000 to ×2,000,000. The
number on the upper left of each
image indicates the image
number t
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tor s̃i includes Δs̃% scale error from the true relative scale
factor strue

i . Note that there is no initial scale error including
in s̃i when Δs̃ = 0. In this experiment, we use Mandelbrot
image sequence of Type A with T = 15. Figure 7 shows
the scale estimation error ET defined by Eq. (12) when Δs̃
is changed. Note that ET for POC is always constant, since
POC does not need the initial scale factor s̃i to estimate the
relative scale factor si . We also evaluate the accuracy using
RMS of ET (T = 15 and Δs̃ = −0.1−0.1) observed in Fig.
7. The RMS error of ET for the iterative POC algorithm is

0.2842 %, while that for the proposed algorithm is 0.0488 %.
As a result, the proposed algorithm is robust against the ini-
tial scale error Δs̃ compared with the iterative POC algo-
rithm.

The above results clearly demonstrate the significant
impact of the proposed algorithm on the accuracy of scale
estimation. The proposed algorithm can estimate the overall
scale factor S = 1,000 with approximately 0.1 % scale error
even from the image sequences containing the initial scale
error.
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5.2 Experiment using electron microscope images

In this experiment, we use electron microscope images taken
by a STEM (Hitachi High-Technologies HD-2000). The tar-
get objects are the carbon graphite as shown in Fig. 8 and the
carbon grating as shown in Fig. 9. Setting the accelerating
voltage to 200 kV, we take 41 images, i.e., T = 40 (t = 0–
40), while changing the magnification range from 7,000× to
2,000,000×. The image size is 640× 480 pixels and the rel-
ative scale factor si of each step is about 1.1–1.25. We get an
image pair for each step using two types of detectors TE and
ZC, where the image taken by TE, which is also known as the
bright-field image, indicates the image formed by the trans-
mission electrons, and the image taken by ZC, which is also
known as the high-angle annular-dark-field image, indicates
the image formed by high-angle scattered electrons. Note that
magnifications are the same regardless of the detector types.
According to this fact, we evaluate the estimation accuracy
of the algorithm using the error εi [%] defined by

εi =
(

sT E
i

s ZC
i

− 1

)
× 100, (13)

where sT E
i and s ZC

i are estimated relative scale factors of
image sequences captured from TE and ZC, respectively.
Note that the true overall scale factor Strue of the image
sequences taken with the electron microscope is unknown.
Unlike the experiments using Mandelbrot images, we evalu-
ate the accuracy of the scale estimation algorithms using only
errors in estimating the relative scale factors sT E

i and s ZC
i .

In this experiment, we compare the accuracy of the iterative
POC algorithm and the proposed algorithm.

Figure 10 shows the errors in estimated relative scale
factors for image sequences of carbon graphite and carbon
grating, respectively. Table 2 shows the RMS errors of each
algorithm for the carbon graphite and the carbon grating. As
a result, the errors of the proposed algorithm are lower than
those of the iterative POC algorithm. The estimation accuracy
of the iterative POC algorithm drops in high-magnification
area from ×400,000 (t = 28) to ×2,000,000 (t = 40)

and low-magnification area from 7,000 × (t = 0) to
30,000× (t = 10) in Fig. 10, since the electron microscope
images include substantial noise and/or have poor texture
as shown in Figs. 8 and 9. On the other hand, the estima-
tion accuracy of the proposed algorithm is stable through-
out the whole sequence, since the error εi is always within
−1 %∼1%. The proposed algorithm is robust against noise
and blur, since the proposed algorithm selects the reliable
local blocks by eliminating outliers according to the peak
value of the POC function between local block images as
mentioned in Sect. 3.2. The result shows that the use of the
proposed algorithm makes it possible to estimate the rela-
tive scale factor si with 0.36 % scale error in terms of RMS
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Fig. 10 Error εi [%] in estimated relative scale factors sT E
i and s ZC

i of
a carbon graphite and b carbon grating (i = 1–40). The error εi defined
in Eq. (13) is based on the fact that magnifications between TE and ZC
are the same. The errors of the proposed algorithm are lower than those
of the iterative POC algorithm. The estimation accuracy of the iterative
POC algorithm drops in the high-magnification area t = 28–40 and the
low-magnification area t = 0–10, since the images include substantial
noise and/or have poor texture in the areas

from the actual microscope image sequences with 41 stages
(T = 40). Since the current magnification calibration method
for electron microscopes includes a maximum of 5 % scale
error, the proposed algorithm demonstrates the possibility to
improve the accuracy of magnification calibration of electron
microscopes.

To improve the robustness of the proposed framework
against the low-quality images due to noise and poor tex-
ture, we can select the high-quality images from the image
sequence using the number of corresponding point pairs. As
mentioned above, the corresponding point pairs are obtained
only from the reliable regions having rich texture. The num-
ber of the corresponding point pairs could be used as an
image quality metric for scale estimation. If the number of
the corresponding point pairs between images is below a
certain threshold, the input image may be eliminated as a
low-quality image. Note that we have to select the high-
quality images having the relative scale factor si below 3.98,
since the proposed scale estimation algorithm can estimate
the relative scale factor si with 0.1 %-error from the image
sequence having the relative scale factor si between 1.41
and 3.98 from the experimental results in Sect. 5.1. Further
investigation is required to demonstrate the effectiveness of
the above improved framework.
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Table 2 RMS errors for the carbon graphite and the carbon grating

Carbon graphite Carbon grating

Iterative POC 0.4408 % 0.5996 %

Proposed 0.2820 % 0.3580 %

Through the paper, we focus on geometric transforma-
tion between the electron microscope images represented
by translation, rotation and scaling to estimate the relative
scale factor st . In practice, drift distortion caused by slight
movement of the object during image acquisition is also
observed in the images. In the proposed framework, the accu-
rate corresponding point pairs between the adjacent images
are obtained using the phase-based correspondence match-
ing technique. According to the corresponding point pairs,
the drift distortion can be corrected by mesh-based affine
transformation. In addition, the use of the accurate corre-
sponding point pairs makes it possible to apply the proposed
framework to panoramic image generation and super resolu-
tion for electron microscope images. Also, further investiga-
tion is required to confirm the applicability of the proposed
framework to such applications.

6 Conclusion

This paper has proposed a high-accuracy scale estimation
algorithm using phase-based correspondence matching for
electron microscope images. We have also proposed a per-
formance evaluation method using the Mandelbrot set to
achieve reliable quantitative evaluation of the scale estima-
tion algorithms. Experimental evaluation using Mandelbrot
images shows that the proposed method makes it possible to
estimate the overall scale factor S with approximately 0.1 %
scale accuracy, where the image size is 401×401 pixels, the
true overall scale factor Strue is 1,000, and the 10 %-initial
scale error Δs̃ is included. Through experiments using the
actual STEM, we demonstrate that the proposed algorithm
is suitable for magnification calibration of the STEM. In our
future work, we will consider a hardware implementation of
the proposed algorithm on the electron microscope.
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