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ABSTRACT

This paper presents an algorithm for fingerprint image restoration
using a Digital Reaction-Diffusion System (DRDS). The DRDS
is a model of a discrete-time discrete-space nonlinear reaction-
diffusion dynamical system, which is useful for generating biolog-
ical textures, patterns and structures. This paper focuses on design
and evaluation of a special DRDS having a capability of restor-
ing incomplete fingerprint images. The phase-only image match-
ing technique is employed to evaluate the similarity between the
original fingerprint images and the restored images. The proposed
algorithm is useful for person identification applications using fin-
gerprint images.

1. INTRODUCTION

Living organisms can create a remarkable variety of patterns and
forms from genetic information. In embryology, the development
of patterns and forms is sometimes called Morphogenesis. In 1952,
Alan Turing suggested that a system of chemical substances, called
morphogens, reacting together and diffusing through a tissue, is
adequate to account for the main phenomena of morphogenesis
[1]. From an engineering viewpoint, the insights into morphogen-
esis provide important concepts for devising a new class of intel-
ligent signal processing algorithms inspired by biological pattern
formation phenomena [2].

Recently, we have proposed a framework of Digital Reaction-
Diffusion System (DRDS) – a discrete-time discrete-spacereaction-
diffusion dynamical system – for designing signal processing mod-
els exhibiting active pattern/texture formation capability [3]. This
paper describes an application of the DRDS to fingerprint image
restoration. The problem considered here is to restore the original
fingerprint patterns from blurred fingerprint images. We design a
special reaction-diffusion system to generate the most likely fin-
gerprint pattern for a given incomplete fingerprint image. The pro-
posed system is useful for identifying a person even from a blurred
fingerprint image and could enhance the performance of conven-
tional fingerprint identification systems. The restoration capability
is evaluated by using the phase-only matching technique [4] for
fingerprint identification, which has already been applied to prac-
tical fingerprint identification systems by the authors’ group [5].

2. DIGITAL REACTION-DIFFUSION SYSTEM

A Digital Reaction-Diffusion System (DRDS) – a model of a discrete-
time discrete-space reaction-diffusion dynamical system – can be
naturally derived from the original reaction-diffusion system de-
fined in continuous space and time. The general M -morphogen
reaction-diffusion system with two-dimensional (2-D) space in-
dices (r1, r2) is written as

∂�̃(t, r1, r2)

∂t
= �̃(�̃(t, r1, r2)) + �̃∇2

�̃(t, r1, r2), (1)

where

�̃ = [x̃1, x̃2, · · · , x̃M ]T ,
x̃i: concentration of the i-th morphogen,

�̃(�̃) = [R̃1(�̃), R̃2(�̃), · · · , R̃M (�̃)]T ,
R̃i(�̃): reaction kinetics for the i-th morphogen,

�̃ = diag[D̃1, D̃2, · · · , D̃M ],
diag: diagonal matrix,
D̃i: diffusion coefficient of the i-th morphogen.

We now sample a continuous variable �̃ in (1) at the time sam-
pling interval T0, and at the space sampling intervals T1 and T2.
Assuming discrete time-index to be given by n0 and discrete space
indices to be given by (n1, n2), we have

�(n0, n1, n2) = �̃(n0T0, n1T1, n2T2). (2)

Using this discritization, the general DRDS can be obtained as

�(n0+1, n1, n2) = �(n0, n1, n2)

+�(�(n0, n1, n2)) +�(l ∗ �)(n0, n1, n2), (3)

where

� = [x1, x2, · · · , xM ]T ,

� = T0�̃ = [R1(�), R2(�), · · · , RM (�)]T ,

� = T0�̃ = diag[D1, D2, · · · , DM ],

l(n1, n2) =




1
T2
1

(n1, n2) = (−1, 0), (1, 0)

1
T2
2

(n1, n2) = (0,−1), (0, 1)

−2( 1
T2
1

+ 1
T2
2
) (n1, n2) = (0, 0)

0 otherwise,
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(a) (b)

Figure 1: Enhancement of a fingerprint image: (a) original
image, (b) enhanced image.

and ∗ is the spatial convolution operator defined as

(l ∗ �)(n0, n1, n2)

=




(l ∗ x1)(n0, n1, n2)
(l ∗ x2)(n0, n1, n2)

...
(l ∗ xM)(n0, n1, n2)




=




1∑
p1=−1

1∑
p2=−1

l(p1, p2)x1(n0, n1 − p1, n2 − p2)

1∑
p1=−1

1∑
p2=−1

l(p1, p2)x2(n0, n1 − p1, n2 − p2)

...
1∑

p1=−1

1∑
p2=−1

l(p1, p2)xM(n0, n1 − p1, n2 − p2)




.

In this paper, we use the two-morphogen DRDS (M = 2) with
the Brusselator reaction kinetics, which is one of the most widely
studied chemical oscillators [6]. The two-morphogen Brusselator-
based DRDS is defined as follows:[

x1(n0+1, n1, n2)
x2(n0+1, n1, n2)

]
=

[
x1(n0, n1, n2)
x2(n0, n1, n2)

]

+

[
R1(x1(n0, n1, n2), x2(n0, n1, n2))
R2(x1(n0, n1, n2), x2(n0, n1, n2))

]

+

[
D1(l ∗ x1)(n0, n1, n2)
D2(l ∗ x2)(n0, n1, n2)

]
, (4)

where

R1(x1, x2) = T0

{
k1 − (k2 + 1)x1 + x2

1x2

}
,

R2(x1, x2) = T0

(
k2x1 − x2

1x2

)
.

In this paper, we employ the parameter set: k1 = 2, k2 = 4,
T0 = 0.01, D1 = T0 and D2 = 5T0.

The DRDS thus defined can be used to enhance fingerprint
patterns [3]. To do this, we first set the initial fingerprint image
in x1(0, n1, n2), at time 0. Note that spatial sampling parame-
ters T1 and T2 should be adjusted according to the inherent spa-
tial frequency of the given fingerprint image. The dynamics (4)

has the equilibrium (x1, x2) = (2, 2), and the variation ranges
of variables (x1, x2) are bounded around the equilibrium point
as 1 ≤ x1 ≤ 3 and 1 ≤ x2 ≤ 3 in the case of given parame-
ter set. Hence, we first scale the [0,255] gray-scale fingerprint
image into [1,3] range. The scaled image becomes the initial in-
put x1(0, n1, n2), while the initial condition of the second mor-
phogen is given by x2(0, n1, n2) = 2 (equilibrium). The zero-
flux Neumann boundary condition is employed for computing the
dynamics. After n0 steps of the DRDS computation, we obtain
x1(n0, n1, n2) as the output image, which is scaled back into the
[0,255] gray-scale image to produce the final output. Figure 1
shows the enhancement of a fingerprint image using the DRDS.

Our initial observation, however, shows that the DRDS with a
spatially isotropic diffusion term (4) often produces some broken
ridge lines in processing fingerprint images as shown in Fig. 1(b),
since it does not take account of the local orientation of ridge flow.
In order to solve this problem, the next section defines an adaptive
DRDS model, in which we can use the local orientation of the ridge
flow in a fingerprint image to guide the action of DRDS. This can
be realized by introducing orientation masks to be convolved with
the diffusion terms in DRDS (4).

3. ADAPTIVE DRDS FOR FINGERPRINT
RESTORATION

In this section, we modify the definition of the simple two-morphogen
DRDS (4) to have an adaptive DRDS dedicated to fingerprint restora-
tion tasks. The two-morphogen adaptive DRDS with the Brusse-
lator reaction kinetics can be written as[

x1(n0+1, n1, n2)
x2(n0+1, n1, n2)

]
=

[
x1(n0, n1, n2)
x2(n0, n1, n2)

]

+

[
R1(x1(n0, n1, n2), x2(n0, n1, n2))
R2(x1(n0, n1, n2), x2(n0, n1, n2))

]

+

[
D1(h

n1n2
1 ∗ l ∗ x1)(n0, n1, n2)

D2(h
n1n2
2 ∗ l ∗ x2)(n0, n1, n2)

]
, (5)

where

hm1m2
i (n1, n2): orientation mask at the pixel

(m1, m2) for the i-th morphogen,
R1(x1, x2), R2(x1, x2):

the Brusselator reaction kinetics.

In the above equation, we define the orientation mask hm1m2
1 (n1, n2)

at the pixel (m1, m2) as a 32 × 32 matrix of real coefficients
within the window (n1, n2) = (−16,−16) ∼ (15, 15). The mask
hm1m2

1 (n1, n2) controls the dominant orientation of the generated
pattern at every pixel (m1, m2) according to the local ridge flow in
the given fingerprint image. The orientation mask can be automat-
ically derived as follows (Fig. 2): (i) take the Fourier transform of
the local image around the pixel (m1, m2), (ii) extract the domi-
nant ridge orientation θ from the transformed image, (iii) generate
a mask pattern Hm1m2

1 (jω1, jω2) having the orientation θ in fre-
quency domain as

Hm1m2
1 (jω1, jω2)=

{
1 for unstable frequency band

(black pixels in Fig. 2(iii))
2 otherwise,
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(i) (ii) (iii) (iv)Local Image

Fourier transform Extract the dominant
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Inverse Fourier transform

Figure 2: Generation of the orientation mask.

procedure Adaptive DRDS with Hierarchical Orientation Es-
timation

1. begin

2. p := 2; { initialize the image partitioing factor}
3. while time step n0 equals to 500 do

4. begin

5. if p is less than 9 then

6. begin

7. partition the input image into p2 sub-images;

8. generate independent orientation masks for
p2 sub-images;

9. run the adaptive DRDS (Eq. (5)) for
10 time steps;

10. p := p + 1

11. end
12. else
13. begin

14. generate independent orientation masks
for all pixels;

15. run the adaptive DRDS (Eq. (5)) for
10 time steps

16. end
17. end
18. end.

Figure 3: Algorithm for the adaptive DRDS with hierarchi-
cal orientation estimation.

and (iv) take the inverse Fourier transform to obtain the orientation
mask hm1m2

1 (n1, n2). The orientation mask hm1m2
2 (n1, n2) for

the second morphogen, on the other hand, has the value 1 at the
center (n1, n2) = (0, 0), and equals to 0 for the other coordinates
(n1, n2). Thus, the dynamics for the morphogen x2(n0, n1, n2)
does not take account of the local orientation.

In practical situation, it is difficult to obtain the exact orien-
tation masks from blurred fingerprints directly. Addressing this
problem, we estimates local orientation masks recursively using a
coarse-to-fine approach as shown in Fig. 3. This restoration al-
gorithm starts with rough estimation of local orientation for four
sub-images (p = 2). The image partitioning factor p gradually in-

creases as restoration step n0 increases. We can obtain pixel-wise
orientation masks �m1m2(n1, n2) after 80 time steps. This simple
strategy makes possible significant improvement in the precision
of orientation estimation.

4. EXPERIMENT

This section describes a set of experiments for evaluating restora-
tion performance of the proposed algorithm. The problem con-
sidered here is to restore the original fingerprint image from its
“subsampled” image. For this purpose, we generate a subsampled
fingerprint image from the original image as follows: (i) partition
the original image into R×S-pixel rectangular blocks, and (ii)
select one pixel randomly from every block and eliminate all the
other pixels (set 127, middle gray-level, to the pixels). The im-
age thus obtained has the same size as the original image, but the
number of effective pixels is reduced to 1/(R×S).

The restoration capability of the proposed algorithm is evalu-
ated by calculating the similarity between the original fingerprint
image and the restored image. To measure the similarity, we em-
ploy the phase-only image matching technique [4], which has been
proved to have an efficient discrimination capability in practical
fingerprint identification tasks [5]. In this experiment, we use 15
distinct fingerprint images (Finger01–Finger15). Restoration ex-
periments are carried out for various subsampling rates 1/(3× 3),
1/(3× 4), 1/(4× 4), 1/(4× 5), 1/(5× 5), 1/(5× 6), 1/(6× 6),
1/(6 × 7), 1/(7 × 7), 1/(7 × 8) and 1/(8 × 8).

For example, Fig. 4 shows the original image, the subsampled
image (n0 = 0) and restored images at n0 = 100, 200 and 400, re-
spectively, for the case of 1/(6× 6) subsampling. We can observe
that the fingerprint pattern is reconstructed from the subsampled
image gradually as time step n0 increases. Figure 5 shows the
variation of matching scores calculated between the original im-
age of Finger01 and the restored images of Finger01–Finger15 for
the case of subsampling rate 1/(6 × 6). The matching score of
the restored image of Finger01 increases selectively as the num-
ber of steps n0 increases. For every experimental trial, the optimal
discrimination capability could be obtained at around n0 = 400
steps, which is indicated with a vertical dashed line in Fig. 5. The
horizontal dashed line indicates the threshold for discrimination.

Table 1 shows the success rate of fingerprint identification for
various subsampling rates. In the case where subsampling rates
are from 1/(3 × 3) to 1/(6 × 6), we can restore the subsampled
images completely. This experiment demonstrates a potential ca-
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Figure 4: Fingerprint restoration from a subsampled image of Finger01 with subsampling rate 1/(6 × 6).
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Figure 5: Matching scores between the original image of
Finger01 and the restored images of Finger01–Finger15
(restoration from 1/(6× 6) subsampled images).

pability of adaptive DRDS to enhance the performance of match-
ing algorithms for blurred fingerprint images. For subsampling
rates higher than 1/(6 × 6), it becomes increasingly difficult to
find correct orientation masks. In this region, dedicated fingerprint
models (such as deformable templates) may be required for further
improvement of restoration performance.

5. CONCLUSION

This paper presents an application of the DRDS to fingerprint im-
age restoration. The adaptive DRDS combined with a coarse-to-
fine orientation estimation technique can reconstruct complete fin-
gerprint patterns even from 1/(6 × 6)-subsampled images. The
proposed algorithm may be useful in many person identification
applications based on fingerprint images.
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