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Abstract—This paper proposes an accurate and dense wide-
baseline stereo matching method using Scaled Window Phase-
Only Correlation (SW-POC). The wide-baseline setting of the
stereo camera can improve the accuracy of the 3D reconstruction
compared with the short-baseline setting. However, it is difficult
to find accurate and dense correspondence from wide-baseline
stereo images due to its large perspective distortion. Addressing
this problem, we employ the SW-POC, which is a correspondence
matching method using 1D POC with the concept of Scale
Window Matching (SWM). The use of SW-POC makes it possible
to find the accurate and dense correspondence from a wide-
baseline stereo image pair with low computational cost. We also
apply the proposed method to 3D reconstruction using a moving
and uncalibrated consumer digital camera.

Index Terms—3D reconstruction, stereo correspondence, wide-
baseline stereo, Scaled Window Phase-Only Correlation.

I. INTRODUCTION

3D reconstruction using stereo vision is a technique to
reconstruct the surface shape of the objects from multiple
view images taken by a camera [1]. The accuracy of 3D
reconstruction depends on (i) the accuracy of correspondence
matching between images and (ii) the length of the stereo
camera baseline. For the purpose of high-accuracy 3D recon-
struction using stereo vision, it is important to find accurate
correspondence between the stereo image pair taken by the
camera with wide-baseline setting.

The feature-based correspondence matching such as Scale-
Invariant Feature Transform (SIFT) [2] has been employed
to obtain the correspondence from wide-baseline stereo image
pairs, since the feature-based approaches are robust against the
geometric distortion due to wide-baseline setting. In this case,
only a limited number of corresponding points is obtained. The
sparse corresponding points can be used to estimate the camera
parameters, while these are not sufficient to reconstruct the
fine 3D structure of the objects. The area-based matching has
been employed to obtain the dense correspondence between
the narrow-baseline stereo image pairs [3]. In the case of wide-
baseline setting, the area-based approaches cannot obtain the
accurate correspondence due to its large perspective distortion
of the stereo image pairs.

Bradley et al., have proposed a dense wide-baseline stereo
matching method which reduces perspective distortion by
scaling the matching window [4]. This method obtains the
dense correspondence by using NCC (Normalized Cross-

Correlation) with changing disparities and scale factors of
the matching window. The drawback of this method is its
high computational cost. So, the visual-hull has to be used
to limit the search range of disparities. In practical situation
where the visual-hull cannot be used, it is difficult to apply
the Bradley’s method. Furthermore, Bradley’s method requires
more computational cost to obtain correspondence with sub-
pixel accuracy.

Addressing the above problems, we propose a novel ac-
curate and dense stereo correspondence matching method
using Scaled Window Phase-Only Correlation (SW-POC). The
proposed method employs the 1D POC-based correspondence
matching [5] with the concept of Scaled Window Matching
(SWM) [4] to find the accurate correspondence from a wide-
baseline stereo image pair with low computational cost. A
set of experiments demonstrates that the proposed method
exhibits accurate and robust correspondence matching in both
short- and wide-baseline stereo pairs. We also show the 3D
reconstruction results of objects using the proposed method,
where the stereo image pairs are taken by a moving and
uncalibrated consumer digital camera.

II. CORRESPONDENCE MATCHING USING SW-POC

In this section, we briefly introduce 1D Phase-Only Cor-
relation (POC) [5] and describe the correspondence matching
technique using SW-POC.

A. 1D Phase-Only Correlation: POC

POC is an image matching technique using the phase
information obtained from DFT (Discrete Fourier Transform)
of images. In the case of a rectified stereo image pair, the
disparity can be limited to horizontal direction. The use of 1D
POC makes it possible to achieve high-accuracy correspon-
dence matching with low computational cost.

Let f(n) and g(n) be the 1D image signals, where −M ≤
n ≤ M and the signal length is N = 2M + 1. Then, the
normalized cross-power spectrum R(k) is defined as

R(k) = F (k)G(k)

|F (k)G(k)| = ej(θF (k)−θG(k)), (1)

where F (k) and G(k) are the 1D DFTs of f(n) and g(n),
G(k) denotes the complex conjugate of G(k), and −M ≤
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k ≤ M . The 1D POC function r(n) between f(n) and g(n)
is the 1D Inverse DFT (1D IDFT) of R(k) and is given by

r(n) =
1
N

M∑
k=−M

R(k)W−kn
N , (2)

where WN = e−j 2π
N . Assume that f(n) and g(n) are minutely

displaced with each other by δ, we can derive the analytical
peak model of the 1D POC function between f(n) and g(n)
as follows

r(n) � α
N

sin(π(n+δ))
sin( π

N (n+δ)) . (3)

The above equation represents the shape of the peak for the 1D
POC function between the 1D image signals that are minutely
displaced with each other. This equation gives a distinct
sharp peak. When δ = 0, Eq. (3) becomes the Kronecker
delta function. We can show that the peak value α decreases
(without changing the function shape itself), when small noise
components are added to the images. Hence we assume α ≤ 1
in practice. The peak position n = −δ of the 1D POC function
reflects the displacement between the two 1D image signals.
Thus, we can compute the displacement δ between signals
f(n) and g(n) by estimating the true peak position of the
1D POC function r(n). We have also proposed the important
techniques for improving the accuracy of 1D image matching
for sub-pixel correspondence matching: (i) function fitting for
high-accuracy estimation of peak position, (ii) windowing to
reduce boundary effects, (iii) spectral weighting for reducing
aliasing and noise effects, (iv) averaging 1D POC functions to
improve peak-to-noise ratio and (v) coarse-to-fine strategy for
robust correspondence search [5].

B. Scaled Window-POC

SW-POC is an image matching technique to handle the
perspective distortion of wide-baseline stereo image pairs by
scaling the size of matching window depending on the shape
of the object. After rectifying a stereo image pair, the reference
and corresponding points have the same vertical coordinates.
Therefore, we only have to consider perspective distortion in
the horizontal direction. Assuming that the local distortion
can be approximated by horizontal scaling, the perspective
distortion can be reduced by scaling the size of the matching
window as shown in Fig. 1. And then, the accurate displace-
ment between scaled matching windows can be estimated by
using 1D POC. Combining the image matching technique
using SW-POC and the coarse-to-fine strategy using image
pyramids, we can find accurate correspondence form a wide-
baseline stereo image pair as well as a short-baseline stereo
image pair.

C. Scale Factor Estimation for SW-POC

This subsection describes how to determine the scale factor
for SW-POC. The scale factor between the matching windows
depends on the surface structure, i.e., the surface normal n, and
the distance from the cameras to the object surface. Focusing
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Fig. 1. Overview of SW-POC.
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Fig. 2. Geometric relationship among left and right images and object.

on the 3D point M = (X,Y, Z), the scale factor s is defined
by

s =
cosψ1

cosψ2

cosφ2

cosφ1
, (4)

where ψi is the incident angle of the viewing ray on the
respective image planes, and φi is the angle between the
viewing ray and the projection of the surface normal n into
the epipolar plane [4]. ψi is obtained from the intrinsic and
extrinsic parameters of the camera i and the 3D point M, while
φi is obtained from the extrinsic parameters of the camera i,
the 3D point M and the surface normal n on the point. The
geometric relationship is illustrated in Fig. 2.

In general, the surface normal n is unknown information for
3D reconstruction using stereo vision, so we cannot estimate
the scale factor s using Eq. (4). Addressing this problem, we
estimate the scale factor s using a peak value α of the 1D POC
function. The window matching of SW-POC is performed
with changing the scale factor s. We select the scale factor
s having the largest peak value of 1D POC function. It results
in the increase of the computational cost, since this approach
needs the iterative window matching. In order to reduce the
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Fig. 3. Matching window to reduce skew caused by the 3D shape of objects.

computational cost, the scale factor s is estimated only in the
coarsest layer.

D. Reducing Computational Cost Using Coarse-to-Fine Strat-
egy

The method discussed the above needs the iterative win-
dow matching with changing the scale factor and the initial
disparity in the coarsest layer to estimate the accurate scale
factor s for SW-POC. The computational cost of the above
method is still higher than that of the conventional method
using 1D POC. In order to achieve further reduction of the
computational cost, we adopt the coarse-to-fine strategy for
3D reconstruction of the objects. First, we obtain the sparse
correspondence between images using SW-POC with various
scale factors and initial disparities, and reconstruct a coarse
3D shape of the objects. Next, we calculate the scale factors
and the initial disparities for dense reference points from
the coarse shape. Then, we obtain the dense correspondence
between images using SW-POC with the scale factors and the
initial disparities calculated as above, and reconstruct a fine
3D shape.

E. Averaging POC Functions to Consider 3D Shape

In practical situation, one pair of 1D image signals is not
sufficient to find the accurate correspondence due to poor
image quality such as noise, blur, etc. resulted in degraded
Peak-to-Noise Ratio (PNR) of 1D POC function. We can im-
prove PNR by averaging a set of 1D POC functions evaluated
at distinct positions around the reference and corresponding
points [5]. As described in the above, SW-POC assumes that
the perspective distortion between 1D image signals can be
approximated by displacement and horizontal scaling. As for
a single line which is parallel to the horizontal axis, this
assumption is proper. However, when skew occurs between
the matching windows, the local distortion cannot be approx-
imated by displacement and horizontal scaling. Although we
empirically confirm that the method described in Sect. II-D
is robust against a certain level of skew, the corresponding
error is increased by large skew. Therefore, we obtain the
correspondence using the method described in Sec. II-D with
rectangular matching windows, and then update the position of
corresponding points using SW-POC with matching windows
where each line is translated according to the 3D shape of the
objects to reduce skew as shown in Fig. 3. When adjacent
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 μTRON,  FV1520
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 50 400mm

 Stereo camera: 
 Point Grey Research,
 GRAS-14S5M-C
 (monochrome) 2

 Image size:
 1,280 960pixels

Fig. 4. Stereo vision system used in experiments.

(a) (b)

Fig. 5. Examples of left camera images: (a) plane, (b) sphere.

corresponding points include outliers, the accuracy of the
correspondence matching may be decreased due to the above
updating process. Thus, we update only the corresponding
points whose peak value of 1D POC function after updating
is greater than that before updating.

III. EXPERIMENT AND DISCUSSION

In this section, we evaluate the accuracy and the com-
putational cost of the proposed method compared with the
1D POC-based correspondence matching method [5] and
Bradley’s method [4].

The parameters for each method are empirically optimized.
For 1D POC and SW-POC, the length of 1D image signal is
N = 32 pixels and the number of 1D image signals to be
averaged is L = 15, the number of the image pyramid layers
is 3. For Bradley’s method, the size of the matching window is
16× 16 pixels. Note that the size of the matching window for
1D POC and SW-POC is equal to that for Bradley’s method,
since the 1D Hanning window is applied to 1D image signals
for 1D POC and SW-POC to reduce the effect of discontinuity
at signal border in 1D DFT [5]. The search range is ±40
pixels at the coarsest layer for SW-POC and ±160 pixels for
Bradley’s method, where these search ranges are equivalent.
The scale factors of the scaled window matching are 1/2,
1/

√
2, 1,

√
2 and 2 both for SW-POC and Bradley’s method.

Fig. 4 shows the stereo vision system used in our exper-
iments. We reconstruct a solid plane and a solid sphere as
reference objects, where the distance between the camera and
the reference object is around 600 mm. We capture the stereo
images of reference objects with changing the baseline length
from 50 mm to 400 mm, where we fix the left camera and
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TABLE I
OUTLIER RATES [%] IN 3D RECONSTRUCTION OF A PLANE AND A

SPHERE.

Baseline [mm] 50 100 200 300 400
1DPOC 1.69 11.94 34.04 93.67 92.75

Plane SW-POC 0.00 0.00 0.00 0.00 0.00
Bradley 0.00 0.00 0.00 0.00 0.00
1DPOC 0.00 0.98 98.89 98.76 99.05

Sphere SW-POC 0.00 0.00 0.00 0.00 0.03
Bradley 0.00 0.00 0.18 6.04 18.63

TABLE II
RMS ERRORS [MM] IN 3D RECONSTRUCTION OF A PLANE AND A SPHERE.

Baseline [mm] 50 100 200 300 400
1DPOC 0.3224 0.3298 0.4720 0.5276 0.4153

Plane SW-POC 0.2010 0.1601 0.1320 0.1130 0.1117
Bradley 0.4513 0.3864 0.1889 0.1271 0.1385
1DPOC 0.2240 0.1319 0.6104 0.4634 0.3893

Sphere SW-POC 0.2203 0.1119 0.0688 0.0564 0.0588
Bradley 0.3479 0.1998 0.1455 0.1404 0.1211

move the right camera so that the left camera image is not
changed. Fig. 5 shows examples of the left camera images
used in the experiments. We rectify the stereo images for each
baseline setting, and find the correspondence for the reference
points on the object of left images. In the experiments, we
place the reference points in a grid with a spacing of 10
pixels. The proposed method adopts the coarse-to-fine strategy
described in Sect. II-D. For the proposed method, we place the
sparse reference points in a grid with a spacing of 30 pixels
and the dense reference points in a grid with a spacing of 10
pixels.

A. Accuracy of 3D Measurement

We evaluate the 3D measurement accuracy by fitting errors
of plane and sphere models. Table I shows outlier rates for
1D POC, SW-POC and Bradley’s method, where the outlier
is defined by a point whose fitting error is greater than 1
pixel. Fig. 6 shows examples of the 3D points reconstructed
by each method from the stereo image pairs whose baseline
length is 50 mm and 400 mm. The outlier rates for 1D POC
are increased with increasing the length of baseline, since 1D
POC assumes that the local distortion between stereo image
pairs is only displacement. On the other hand, the outlier rates
for SW-POC and Bradley’s method are not increased with
increasing the length of baseline. Furthermore, in the case of
a sphere, the outlier rates for Bradley’s method are gradually
increased, since the local distortion can not be approximated
by horizontal scaling when skew occurs between the matching
windows, while the outlier rates for SW-POC is significantly
small, since the proposed method consider the skew between
the matching windows as described in Sect. II-E.

Table II shows the RMS (Root Mean Square) of fitting
errors in 1D POC, SW-POC and Bradley’s method, where
RMS errors are calculated for 3D points without outliers.
RMS errors in SW-POC and Bradley’s method are reduced
with the wider-baseline setting, since the use of the wide-
baseline settings makes it possible to suppress the influence

TABLE III
COMPUTATIONAL COST FOR FINDING A SINGLE CORRESPONDING POINT.

Additions Multiplications Divisions Square roots
1D POC 70,784 61,056 3,840 1,920
SW-POC 200,555 172,992 10,880 5,444
Bradley 3,109,300 1,302,200 25,500 25,500

of correspondence errors on the reconstruction results. From
Table II and Fig. 6, the RMS errors in SW-POC are less than
those for Bradley’s method, especially for a plane with short-
baseline settings and a sphere with wide-baseline settings. This
is because the sub-pixel accuracy of SW-POC is higher than
that of Bradley’s method and the proposed method consider
the local distortion such as skew. As is observed in the
above experiments, the proposed method can find accurate
correspondence from both short- and wide-baseline stereo
image pairs.

B. Computational Cost

We evaluate the amount of computation required for finding
a single corresponding point. Note that the computational
cost of SW-POC is defined by the mean cost for sparse and
dense reference points, since the proposed method employ the
coarse-to-fine strategy as described in Sect. II-D.

Table III shows the number of additions, multiplications,
divisions and square roots for each method. The computational
cost of SW-POC is smaller than that of the Bradley’s method.
Although the proposed method employs the iterative window
matching to estimate the scale factor and the initial disparity,
the computational cost of SW-POC is not significantly large
compared with that of 1D POC. This is because the proposed
method suppresses the increase in computational cost by
estimating the scale factor and the initial disparity only in
the coarsest layer and by using the coarse-to-fine strategy as
described in Sect. II-D.

IV. APPLICATION

In this section, we present simple, accurate and dense 3D
reconstruction using a moving and uncalibrated consumer
digital camera as an application of the proposed method.

In the case of 3D reconstruction using a consumer digital
camera, a stereo image pair is obtained by capturing two
images from different viewpoints, where the baseline length
between two images depends on the camera motion. So, a
correspondence matching technique robust against the baseline
length is required for the 3D reconstruction from a mov-
ing camera. Thus, we employ the correspondence matching
method using SW-POC proposed in this paper. Since SW-
POC assumes the use of rectified stereo image pairs, the
camera parameters must be estimated. In the case of a moving
camera, we need to estimate the camera parameters from the
captured images, since it is difficult to calibrate a camera in
advance. Addressing this problem, we employ the Structure
from Motion (SfM) using SIFT [2], [6], [7]. Also, the 3D
points reconstructed by the proposed method are accurate
and dense, so we can generate the mesh model from the
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Fig. 6. Reconstruction results: (a)–(c) reconstructed 3D points of a plane, and (d)–(f) reconstructed 3D points of a sphere.

(b)(a) (c)

Fig. 7. Reconstruction result of the tile: (a) left image, (b) right image, and
(c) reconstructed mesh model

reconstructed 3D points using Poisson Surface Reconstruction
[8], where a surface normal of each point is calculated from
neighboring points.

For example, we reconstruct 3D shape of a interior tile
and a cat carving from two views captured by a consumer
digital camera, where the size of images is 2,000 × 1,500
pixels. Fig. 7 and Fig. 8 show stereo images and reconstructed
mesh models of the tile and the cat, respectively. Note that
the baseline length in Fig. 7 (a) and (b) is wide, while that
in Fig. 8 (a) and (b) is short. As a result, for objects having
complicated structure such as the tile and the cat, the proposed
method can reconstruct accurate 3D mesh models regardless
of the difference in baseline setting.

V. CONCLUSION

This paper has proposed an accurate and dense stereo
correspondence matching method using SW-POC, and demon-
strated the high-accuracy 3D reconstruction using SW-POC
with lower computational cost than Bradley’s method. We

(b)(a) (c)

Fig. 8. Reconstruction result of the cat: (a) left image, (b) right image, and
(c) reconstructed mesh model

have also demonstrated 3D reconstruction from a moving
camera using the proposed method. The use of the proposed
method makes it possible to reconstruct accurate and dense
3D structure of objects with very simple operation such as
two shots of a consumer digital camera.
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