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An Effective Approach for Iris Recognition
Using Phase-Based Image Matching
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Abstract—This paper presents an efficient algorithm for iris recognition using phase-based image matching—an image matching
technique using phase components in 2D Discrete Fourier Transforms (DFTs) of given images. Experimental evaluation using the
CASIA iris image databases (versions 1.0 and 2.0) and Iris Challenge Evaluation (ICE) 2005 database clearly demonstrates that the
use of phase components of iris images makes it possible to achieve highly accurate iris recognition with a simple matching algorithm.
This paper also discusses the major implementation issues of our algorithm. In order to reduce the size of iris data and to prevent the
visibility of iris images, we introduce the idea of 2D Fourier Phase Code (FPC) for representing iris information. The 2D FPC is
particularly useful for implementing compact iris recognition devices using state-of-the-art Digital Signal Processing (DSP) technology.

Index Terms—Phase-based image matching, phase-only correlation, phase-only matched filtering, biometrics, iris recognition.

1 INTRODUCTION

BIOMETRIC authentication has been receiving extensive
attention over the last decade, with increasing demands
in automated personal identification. The aim of biometrics
is to identify individuals using physiological or behavioral
characteristics such as fingerprints, face, iris, retina, and
palmprints. Among many biometric techniques, iris recog-
nition is one of the most promising approaches due to its
high reliability for personal identification [1], [2], [3], [4],
(5], [e], [7], [8], [9].

The human iris, which is the annular part between the
pupil and the white sclera, has a complex pattern
determined by the chaotic morphogenetic processes during
embryonic development. The iris pattern is unique to each
person and to each eye and is essentially stable over a
lifetime. Furthermore, an iris image is typically captured
using a noncontact imaging device, which is of great
importance in practical applications.

A major approach for iris recognition today is to
generate feature vectors corresponding to individual iris
images and to perform iris matching based on some
distance metrics [3], [4], [5], [6]. Most of the commercial
iris recognition systems implement a famous algorithm
using iriscode, which was proposed by Daugman [3]. In this
algorithm, 2D Gabor filters are used to extract a feature
vector corresponding to a given iris image. Then, the filter
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outputs are quantized to generate a 2 Kbit iriscode. The
dissimilarity between a pair of iriscodes is measured by
their Hamming distance based on an exclusive-OR opera-
tion. The iriscode is very compact and can be accommo-
dated, even on the magnetic stripe implemented on the
back of typical credit cards. In addition, exclusive-OR
comparison allows us to perform extremely rapid recogni-
tion. On the other hand, one of the difficult problems in
feature-based iris recognition is that the matching perfor-
mance is significantly influenced by many parameters in
the feature extraction process (for example, spatial position,
orientation, center frequencies, and size parameters for
2D Gabor filter kernels), which may vary, depending on the
environmental factors of iris image acquisition. Given a set
of test iris images, extensive parameter optimization is
required to achieve a higher recognition rate.

Addressing the above problem, this paper proposes an
efficient iris recognition algorithm using phase-based
image matching, that is, an image matching technique
using only the phase components in 2D Discrete Fourier
Transforms (DFTs) of given images. The technique of
phase-based image matching has so far been successfully
applied to high-accuracy image registration tasks for
computer vision applications [10], [11], [12], where the
estimation of subpixel image translation is a major concern.
In our previous work [13], [14], [15], [16], on the other hand,
we proposed an efficient fingerprint recognition algorithm
using phase-based image matching and we have developed
commercial fingerprint verification units for access-control
applications [17]. The original contribution of this paper is
to show that the same matching technique is also highly
effective for iris recognition (see our conference papers [18],
[19] for earlier discussions of the proposed idea). Experi-
mental evaluation using the CASIA iris image databases
(versions 1.0 and 2.0) [20] and Iris Challenge Evaluation
(ICE) 2005 database [21] clearly demonstrates that the use
of the Fourier phase spectra of iris images makes it possible
to achieve highly accurate iris recognition with a simple
matching algorithm.

Published by the IEEE Computer Society
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Fig. 1. Flow diagram of the proposed algorithm.

This paper also discusses the major implementation
issues of our algorithm. The proposed matching algorithm
assumes the use of iris images registered in the system to
achieve high performance. In order to reduce the size of iris
data and to prevent the visibility of individual iris images,
we introduce the idea of 2D Fourier Phase Code (FPC) for
representing iris information. The 2D FPC is particularly
useful for implementing compact iris recognition devices
using the state-of-the-art Digital Signal Processing (DSP)
technology. By changing the degree of phase quantization,
we can optimize the trade-off between iris data size and
recognition performance flexibly while avoiding the visibi-
lity of individual iris images.

2 PREPROCESSING

Fig. 1 shows the overview of the proposed algorithm. The
algorithm consists of two stages: 1) the preprocessing stage
and 2) the matching stage. The purpose of preprocessing is
to localize the iris region in the captured image and to
produce a normalized iris texture image with a fixed size
(256 x 128 pixels in our algorithm). A typical eye image
contains some irrelevant parts (for example, the eyelid,
sclera, and pupil), which cause significant degradation of
the matching performance. The preprocessing step is
designed to remove these irrelevant parts correctly from
the given image and to extract only the iris region. In
addition, the size of the extracted iris varies, depending on
the camera-to-eye distance and light brightness level, as
schematically illustrated in Fig. 2. Therefore, the size
should be normalized before the matching operation.

2.1 Iris Localization

This step detects the inner boundary (the boundary
between the iris and the pupil) and the outer boundary
(the boundary between the iris and the sclera) in the
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Fig. 2. Iris size change, depending on the brightness level: (a) bright and
(b) dark.

original gray-scale image f,.4(m1,m2) shown in Fig. 3a.
Fig. 4 shows the deformable iris model with 10 parameters
used in our system, where the inner boundary and the
outer boundary of an iris are represented by a pair of
independent ellipses. Through a set of experiments, we
found that the accuracy of the iris localization step has
significant impact on the overall system performance.
Hence, the highly flexible iris model with 10 parameters
is employed in our system.

Listed as follows are the detailed steps of the inner
boundary detection:

1. The first step is to detect the pupil center (c;,c2) in
the original image f,.4(m1,m2). To do this, we first
transform the given gray-scale image forq(1m1,m2)
into a binary (negative) image fyi,(m1,m2), where
the pixel value 1 corresponds to the dark pixel and
the value 0 corresponds to the bright pixel. Then, the
pupil center (ci,c;) is estimated as the center of
gravity of the binary image fy;;,(m1, m2) defined as
follows:

> mafuin(ma, mo)
o _ (my,me)eW (1)
Z fbin(mlva) ’

(my,me)eW

Z mszm(ml, m2)
(mq,mg)eW
[ = . 2
? E fbin(mh mz) ( )

(ma,me)eW

The coordinates (c;,c2) are updated repeatedly by
reducing the size of the search area W until they
converge to a certain point. For every iteration, the
search area W is shifted to the updated pupil center
(c1,¢2). In addition, the size of W is reduced until it
covers the whole pupil region with a moderate
margin. The obtained coordinates (c1,c;) for the
pupil center are used as the initial values for the
optimization in Step 2.

The accuracy of pupil center detection depends
on the threshold value used for image binarization.
That is, if many nonpupil regions (for example, the
eyelashes) have pixel value 1 (that is, a dark pixel) in
the binary image fiin(mi,m2), (1) and (2) may
choose a pixel (¢, ) that is in the nonpupil region,
resulting in false detection of the inner boundary in
Step 2. Thus, it is important to determine the
appropriate threshold value for binarization. For
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Fig. 3. Iris image preprocessing. (a) Original image fo,.,(m1,m2). (b) Detected inner boundary. (c) Detected outer boundary. (d) Lower half of the iris
region for matching. (e) Normalized image. (f) Normalized image with eyelid masking. (g) Enhanced image f,om (11, n2).

example, in our experiments with the CASIA
version 1.0 database, we determine the threshold
value from the intensity histogram of the original
image since the pupil regions in the iris images of
this database have constant intensity values which
can be easily identified in the histograms. For the
CASIA version 2.0 and ICE 2005 databases, on the
other hand, we first detect the corneal reflection in
the iris image and then we determine the binariza-
tion threshold from pixel values around the detected
corneal area. As a result, we can estimate the pupil
region without significant error.

2. The next step is to find the optimal estimate
(l1,l2,c1,¢9,61) for the inner boundary (Fig. 4) by
maximizing the following absolute difference:

|S(l1 + All,lg + Alg,cl,CQ,el) — 3(11,12701,02,01”.

(3)

Iris center
(¢3,cq)

Quter boundary

Sclera

Inner boundary

Pupil center
(¢1,6)

Fig. 4. Deformable iris model with 10 parameters.

Here, Al; and Al, are small constant, and S denotes
the N-point contour summation of pixel values
along the ellipse and is defined as

N-1
Sl by, c1,09,60) = Y forg(p1(n),p2(n),  (4)

n=0
where p;(n) = licost; - cos(3n) — lpsinb; - sin(¥n) +

ar and py(n) = lisinb; - cos(Zn) + lycosh; - Sm(%\’; n)
+cz. Thus, we will detect the inner boundary as
the ellipse on the image for which there will be a
sudden change in luminance summed around its
perimeter. Fig. 3b shows an example of inner
boundary detection. In order to reduce the compu-
tation time, the parameter set (Iy,ls, c1, ¢2,0;) can be
simplified, depending on iris images. For example,
in our experiments using the CASIA iris image
databases (versions 1.0 and 2.0) and ICE 2005
database, assuming 6, =0 causes no degradation
in its performance.

The optimal estimate (I3,l4,c3,c4,62) for the outer
boundary (Fig. 4), on the other hand, can be found in the
same manner, with the path of contour summation
simplified from an ellipse to a circle (that is, I3 =1l).
Fig. 3c shows an example of outer boundary detection. This
iris localization algorithm could be applied to many
difficult eye images and some examples are shown in Fig. 5.

2.2 Iris Normalization

The next step is to normalize the extracted iris region and
to compensate for the elastic deformations in iris texture.
We unwrap the iris region to a normalized rectangular
block with a fixed size (256 x 128 pixels in our
experiments). To avoid having the iris region be occluded
by the upper eyelid and eyelashes, we use only the lower
half of the iris region, as shown in Fig. 3d. This iris
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Fig. 5. Examples of iris localization.

region is transformed into the normalized image by the
parameters (I1,l2,13,14,¢1,¢,¢3,¢4,01,02), as shown in
Fig. 3e, where the n; axis corresponds to the angle of
the polar coordinate system and the ny axis corresponds
to the radius.

2.3 Eyelid Masking

This process masks the irrelevant eyelid region in the
normalized iris image. In general, the iris/eyelid boundary
can be modeled as an ellipse contour in the normalized
image. Hence, the same method for detecting the inner
boundary can be applied to iris/eyelid boundary detection.
The detected eyelid region is masked as shown in Fig. 3f.

2.4 Contrast Enhancement

In some situations, the normalized iris image has low
contrast. Typical examples of low-contrast iris images are
found in the CASIA version 2.0 and ICE 2005 databases. In
such a case, we improve the contrast by using the local
histogram equalization technique [22]. Histogram equal-
ization transforms the pixel value so that the resulting
image has an approximately flat histogram. To do this, we
use a cumulative histogram of the image as the pixel value
mapping function. Let H(u) be the cumulative histogram of
the image, where u denotes the pixel value (€ [0,255]). We
convert the pixel value u in the iris image to the pixel value
255H (u)/Nioter to have a contrast-enhanced iris image,
where N, denotes the total counts of pixels. In our
algorithm, we transform the pixel value by using the local
cumulative histogram evaluated within a small image block
(of size 15 x 15 pixels) centered at the pixel to be converted.
Fig. 3g shows an enhanced image, where the iris texture
becomes much clearer than in Fig. 3f.

3 FUNDAMENTALS OF PHASE-BASED IMAGE
MATCHING

The key idea in this paper is to use phase-based image
matching for the matching stage shown in Fig. 1. Before
discussing the details of the matching algorithm (in
Section 4), this section introduces the principle of phase-
based image matching using the Phase-Only Correlation
(POC) function [11], [12], [13], [14], [15], [16].

Consider two N;x N, images f(ni,ny) and
g(n1,n2), where we assume that the index ranges are
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ny = —Ml,“-,Ml (M1 >0) and N9 :—MQ,-“,MQ (Mg >
0) for mathematical sirnplicity1 and, hence, Ny = 2M; + 1
and Ny, = 2Ms, + 1. Let F(ky, ko) and G(ky, ko) denote the
2D DFTs of the two images. F(ki, ko) and G(ki,k2) are
given by

M, M,
Fkik) = > Y f(ny,ng) Wy W
n1=—Mj ng=—DM, (5)
= Ap(ky, k) e/ k),
My My
kla k2 Z Z nh TLQ)WJI\%M W]l:/gzm
ny=—M; ng=—M> (6)
:Ag(kl,kz)ejeG(kl’kZ),
where k’l —Ml, Ml, k’z —MQ, Mz, W]\,] =e€ ]\l

and Wy, =e IR, Ap(ky, ko) and Ag(ki,ks) are amplitude
components and 0r(ky, ko) and (k1 ko) are phase compo-
nents. The cross-phase spectrum Rpg(k1,k2) between
F(ki,ky) and G(k, k2) is given by

F(ki, k)G (ky, k)
| F k1, ko) G(ky, k)| (7)
i{0F (1.k2)—0c (k: ,kz)},

Rpg(k, ke) =

=

where G(ki, ky) denotes the complex conjugate of G(k1, ks).
The POC function rs,(n1,ns) is the 2D Inverse DFT (IDFT)
of Rpa(ki,k2) and is given by

1 M, M,

NN, k=M,

Rpa (ki k2)
[ 8)

kml k3n2
X Wy kmpy ke,

ng(nl, ng) =

When two images are similar, their POC function gives a
distinct sharp peak. When f(ni,ns) = g(n1,n2), the POC
function rs4(n1,n2) becomes the Kronecker delta function
8(n1,ng). If two images are not similar, the peak value
drops significantly. The height of the peak can be used as a
good similarity measure for image matching and the
location of the peak shows the translational displacement
between the two images.

In our previous work on fingerprint recognition [13],
[14], [15], we proposed the idea of the Band-Limited POC
(BLPOC) function for an efficient matching of fingerprints,
considering the inherent frequency components of finger-
print images. Through a set of experiments, we have found
that the same idea is also very effective for iris recognition.
Our observation shows that the 2D DFT of a normalized iris
image sometimes includes meaningless phase components
in high-frequency domains and that the effective frequency
band of the normalized iris image is wider in the
k1 direction than in the ky direction, as illustrated in
Fig. 6. The original POC function r,(n1, ne) emphasizes the
high-frequency components, which may have less relia-
bility. This reduces the height of the correlation peak
significantly, even if the given two iris images are captured
from the same eye. On the other hand, the BLPOC function

1. Note that the discussion could be easily generalized to nonnegative
index ranges with power-of-two image sizes.
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-Ki K

Fig. 6. Normalized iris image in (a) the spatial domain and (b) the
frequency domain (amplitude spectrum).

allows us to evaluate the similarity by using the inherent
frequency band of the iris texture.

Assume that the ranges of the inherent frequency
band of iris texture are given by k; = —Kj,---,K; and
k’g = *K27"’,K2, where 0 S Kl S Ml, and 0 S KQ S MQ.
Thus, the effective size of frequency spectrum is given by
Li =2K;+1 and L, = 2K, + 1. The BLPOC function is
defined as

K\ Ks
Tty (n1,m2)

LleklZ Z Rpa(ki, k2)

o Sy 9)
x Wik —kan:
Ly Ly ’

where n; = —-Ki,---,K;, and ny=—K,,---,K,. When
two images are similar, their BLPOC function gives a
distinct sharp peak. When f(ni,n3) = g(ni,n2), we have
r}(gle (n1,n2) = 6(n1,n2). Note that the maximum value of
the correlation peak of the BLPOC function is always
normalized to 1 and does not depend on L; and L. In
addition, the translational displacement between the two
images can be estimated by the correlation peak position.

In our matching algorithm, K;/M; and K,/M, are the
major control parameters since these parameters reflect the
quality of iris images. In other words, we need to select
adequate values of these parameters, depending on the iris
database to be used. In our experiments, we use the
parameter set (K;/M, Ky/M,) = (0.6,0.2) for the CASIA
version 1.0 database, (K;/M;, Ky/Ms) = (0.55,0.2) for the
CASIA version 2.0 database, and (K;/M;, Ky/Ms) =
(0.4,0.2) for the ICE 2005 database.

Figs. 7 and 8 show examples of genuine and impostor
matching, respectively, in the CASIA iris image version 1.0
database, where each figure compares the original POC
function r4(n1,n2) and the BLPOC function r/f-(glK'z (n1,m2).
In the case of genuine matching, the BLPOC function
exhibits a higher correlation peak than that of the original
POC function, while, with impostor matching, neither
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function shows significant correlation. Thus, the BLPOC
function provides a much higher discrimination capability
than the original POC function.

In practical iris recognition tasks, we need to determine
an appropriate threshold for the peak value of the BLPOC
function in order to distinguish authorized from unauthor-
ized people. Given a set of test iris images, we can
determine the optimal value of threshold from Receiver
Operating Characteristic (ROC) curves. Section 5 discusses
the detailed performance assessment of our algorithms
based on the ROC curves. Typical threshold values at the
Equal Error Rate (EER) condition are given by 0.15 for the
CASIA version 1.0 database, 0.095 for the CASIA version
2.0 database, and 0.079> for the ICE 2005 database.

4 MATCHING ALGORITHMS

In this section, we describe the detailed process of the
matching stage in Fig. 1, which consists of effective region
extraction (to be explained in Section 4.1.1), image align-
ment (to be explained in Section 4.1.2), and matching score
calculation (to be explained in Sections 4.1.3 and 4.1.4).
Sections 4.1.1-4.1.4 form a baseline matching algorithm. The
BLPOC function described in Section 3 is used in image
alignment and matching score calculation. In Section 4.2, on
the other hand, we modify the baseline matching algorithm
so as to deal with significantly degraded iris images.

4.1 Baseline Algorithm
4.1.1 Effective Region Extraction

Given a pair of normalized iris images fyorm(n1,n2) and
Gnorm(n1,12) to be compared, the purpose of this process
is to extract effective regions of the same size from the
two images, as illustrated in Fig. 9a. Let the size of two
images fnorm(nlan?) and gnmm(nl;n?) be Nl X N2 and let
the heights of irrelevant regions in fuom(n1,n2) and
Gnorm (11, n2) be hy and hy, respectively. We obtain effective
images fe;r(n1,n2) and gerr(n1,ne) by extracting effective
regions of size N; x {Ny —max(hs, hy)}. We eliminate
irrelevant regions such as a masked eyelid and specular
reflections.

On the other hand, a problem may occur when most of
the normalized iris image is covered by the eyelid (that is,
when max(hy, hy) >~ N>). In such a case, the extracted region
becomes too small to perform image matching. To solve
this problem, we extract multiple effective subregions from
each iris image by changing the height parameter h, as
illustrated in Fig. 9b. In our experiments, we extract six
subregions from a single iris image by changing the
parameter h as 55, 75, and 95 pixels. Our experimental
observation shows that the recognition performance of the
proposed algorithm is not sensitive to these values. Thus,
we do not perform optimization for the parameter h.

4.1.2 Displacement Alignment

This step aligns the translational displacement (7y,7)
between the extracted images f.sr(n1,n2) and gerr(n1,n2).
The rotation of the camera, head tilt, and rotation of the eye
within the eye socket may cause displacements in normalized

2. The typical threshold value for the ICE 2005 database is derived from
the result of Experiment 1 (see Section 5 for our experimental condition).
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Fig. 7. Example of genuine matching using the original POC function and the BLPOC function. (a) Iris image f(ni,ns). (b) Iris image g(ni,ns).
(c) Original POC function ry,(ny,ns). (d) BLPOC function 7" (ny,ny) (K1/My = 0.6, Ko/ M = 0.2).
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Fig. 8. Example of impostor matching using the original POC function and the BLPOC function. (a) Iris image f(ni,n2). (b) Iris image g(ni,ns).

(c) Original POC function ry,(ny, ns). (d) BLPOC function 7" (ny,ny) (K1/My = 0.6, K2/ M = 0.2).
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Fig. 9. Effective region extraction. (a) Normal case. (b) The case when multiple subregions should be extracted.

images (due to the polar coordinate transformation). The
displacement (71,7) can be estimated from the peak
location of the BLPOC function ngngf (n1,n2). We align
the two images based on the parameter set (7,7) and
extract common-region images f(ni,ns) and g(ni,n2).

4.1.3 Matching Score Calculation

In this step, we calculate the BLPOC function rffgle (n1,m9)
between the aligned images f(ni,ns) and g(ni,n2) and we
evaluate the matching score. In the case of genuine matching,
if the displacement between the two images is aligned, the
correlation peak of the BLPOC function should appear at the
origin (n1, n2) = (0, 0). Thus, we calculate the matching score
between the two images as the maximum peak value of the

BLPOC function within the small window O centered at the
origin. The matching score is given by

{rffglKQ (n4, n2)}

In our experiments, the size of the window Ois 11 x 11 pixels.
When multiple subregions are extracted at the “Effective
region extraction” process, as shown in Fig. 9b, the matching
score is calculated by taking an average of matching scores
for six subregions.

Matching score = max

(”m ,’VLQ)GO

(10)

4.1.4 Precise Matching with Scale Correction

For some iris images, errors take place in the iris
localization process. This error causes slight scaling in the
horizontal direction (that is, the n; direction) of the
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Fig. 11. Effect of scale correction in genuine matching. (a) Iris image f(n1,n2). (b) Iris image g(n1,ns). () BLPOC function without scale correction.

(d) BLPOC function with scale correction.
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Fig. 12. Effect of scale correction in impostor matching. (a) Iris image f(ny,n2). (b) Iris image g(n1,n2). (c) BLPOC function without scale correction.

(d) BLPOC function with scale correction.

normalized iris image. In the case of the genuine matching,
this reduces the height of the correlation peak. Thus, if the
matching score is close to the threshold value to separate
genuine scores and impostor scores, we generate a set of
slightly scaled images, calculate the matching scores for the
generated images, and select their maximum value as the
final matching score. In our experiments, we scale the
normalized images in the n; direction by +3 percent,
+5 percent, and +7 percent, as illustrated in Fig. 10. The
effects of scale correction in genuine matching and in
impostor matching are shown in Figs. 11 and 12, respectively.
In the case of genuine matching, the correlation peak value of

the BLPOC function is enhanced. On the other hand, with
impostor matching, there is no significant change in the
peak value.

4.2 Modified Algorithm for Degraded Iris Images

This section presents some modifications of the baseline
matching algorithm which are especially suitable for
degraded iris images. The baseline algorithm described in
the previous section performs image matching only once by
using the whole iris image, as shown in Figs. 7 and 8
(except for the case in Fig. 9b). If the quality of iris images is
sufficient, a single matching is enough to achieve a highly
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Fig. 13. Block partitioning and cross-phase spectrum calculation.

accurate iris recognition. When the quality of iris images is
significantly degraded due to, for example, defocusing and
blurring, it is difficult to achieve high performance by the
baseline algorithm. Addressing this problem, we modify
the matching algorithm by introducing a spatial ensemble
averaging of the BLPOC function. Given a pair of iris
images, we first divide each iris image into multiple small
blocks (that is, subregions) and compute the BLPOC
function for every block pair. Then, we take an average of
the computed BLPOC functions across the whole image
plane to improve the peak-to-noise ratio of the correlation
surface. This technique leads to better discrimination
capability, even for highly degraded iris images.

In Sections 4.2.1-4.2.3, we explain the detailed process of
the modified algorithm. The algorithm starts with the two
normalized iris images foomm(n1,72) and gyorm (n1,n2). Un-
like the baseline algorithm, the modified algorithm does
not perform eyelid masking and effective region extraction
and is given as follows:

4.2.1 Displacement Alignment

This process aligns the translational displacement (71, 72)
between fuom(ni,n2) and  guorm(n1,n2). We obtain the
aligned images f(ni,n2) and g(ni,ns) by using the same
idea described in Section 4.1.2.

4.2.2 Block Partitioning and Cross-Phase Spectrum
Calculation

We first partition the aligned iris images f(ni,n2) and
g(n1,m2) into multiple blocks. Assume that the size of a
block is By x Bs pixels (64 x 32 pixels in our experiments)
and that each block overlaps with the adjacent blocks by
By /2 pixels in the n; direction and by B,/2 pixels in the
ny direction, as illustrated in Fig. 13. Let s;(n1,n2) be the
ith block extracted from the image f(ni,n2) and ¢;(n;,n9)
be the ith block extracted from the image g(nq,n2), where
i =1,---, Nijock- We compute the 2D DFTs of s;(n1,n2) and
ti(n1,n2), which are denoted by S;(ki,ks) and T;(ki, ko),
respectively. Then, we calculate the cross-phase spectrum
Rg.1.(k1, ko) between S;(ki, k) and T;(k, k) according to
(7) for every i. The BLPOC function rﬁf},f(‘z (n1,m2) is defined
as the 2D IDFT of Rg.1(k1, k2) (see (9)).

4.2.3 Block-Based Averaging of the Band-Limited
Phase-Only Correlation Function and Matching
Score Calculation

In this step, we calculate the weighted average of the

BLPOC functions rﬁf,‘liKz (n1,m2) (i =1,--+, Nyoe) evaluated

from all block pairs. The weight w; associated with the
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Fig. 14. Schematic illustration of the BLPOC function.

ith BLPOC function 2" (ny, n,) is determined depending
on the number of irrelevant pixels that belong to the eyelid
region in the blocks s;(n1,n2) and t;(ny,n2). Assume that
the number of pixels of eyelid regions in s;(n;,ny) is given
by E;, and that, in ¢;(n1, ny), it is given by E;,. The weight w;
is defined as

1— gy if 32 <05

.= B xB: By xB 11
i { 0 " otherwise, (11)
where E; = max(FE;,, E;,). For computational efficiency, we
calculate the weighted average in the frequency domain.

The average cross-phase spectrum Ry (ki1, k2) is given by

R (k. ) = it Wiz (b, ko)
ave\IV1, M2 ) — Zfib’ff’»wl

The average BLPOC function 75152 (n;, n,) is defined as the
2D IDFT of Ryye(k1, k2) (see (9)). Then, the matching score is
calculated by (10), where the size of O is 11 x 7 pixels. As
explained in Section 4.1.4, precise matching with scale
correction is also performed.

This modification is effective for degraded iris images
since the averaging process (12) improves the peak-to-noise
ratio of the BLPOC function 75152 (n, n,). Fig. 14 illustrates
schematically the correlation peak structure of the BLPOC
function, where the correlation surface consists of two
major components: 1) the correlation peak that originated in
the correlated image components in iris images and 2) the
random noise that originated in uncorrelated components.
For iris recognition with poor-quality images, reducing the
random noise floor is essential since it degrades the
impostor rejection rate. The ensemble averaging of correla-
tion surface is highly effective for reducing the noise floor
due to uncorrelated components, while it does not affect
the correlation peak significantly.

. (12)

5 EXPERIMENTS AND DISCUSSIONS

This section describes a set of experiments for evaluating
the matching performance of the proposed algorithms, that
is, the baseline algorithm described in Section 4.1 and the
modified algorithm with averaging described in Section 4.2,
using the CASIA iris image databases (versions 1.0 and 2.0)
[20] and ICE 2005 database [21]. Note that ICE is the first
worldwide iris recognition algorithm competition managed
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(b)

Fig. 15. Examples of iris images in iris image databases. (a) The CASIA iris image version 1.0 database. (b) The CASIA iris image version 2.0

database. (c) The ICE 2005 database.

by the National Institute of Standards and Technology
(NIST). Fig. 15 shows some examples of iris images in these
databases.

An important advantage of our matching algorithms is
that they employ only two main parameters, K;/M; and
K, /M,, for controlling the iris recognition performance.
These parameters may vary depending on the image
capture environment and sensors to be used because the
parameters reflect the quality of iris images. The parameter
K1 /M (or K5/Ms,) corresponds to the effective horizontal
(or vertical) bandwidth for iris recognition. That is, for low-
quality images without reliable high-frequency components,
we should choose small values for K /M; and K3/ M. Thus,
there exists a direct relationship between the parameters and
the effective frequency spectra of iris images. Due to this
simple property, the initial estimate of the optimal parameter
set could be easily obtained by examining the amplitude
spectra of the given iris images automatically. For the CASIA
version 1.0, CASIA version 2.0, and ICE 2005 databases,
spectral analysis suggests that the parameters should be
around 0.5 for K, /M; and 0.2 for K5/ M,.

In contrast to the conventional feature-based methods,
optimizing these parameters is not a difficult task. Our
experimental observation shows that the recognition
performance is not so sensitive to K7/M; and K,/M,. For
example, we employ the parameter sets (K7/M;, Ko/ Ms) =
(0.6,0.2) for CASIA version 1.0, (K;/M,Ky/Ms)=
(0.55,0.2) for CASIA version 2.0, and (K;/M, Ky/Ms) =
(0.4,0.2) for ICE 2005, even though the image qualities of
these databases are significantly different from one an-
other. This invariability of the parameters implies that we
do not need to perform extensive parameter optimization,
which is usually indispensable in typical feature-based iris
recognition algorithms. For each iris image database, we
optimize the parameters K;/M; and K,/M, through a set
of training trials by changing the parameters as K;/M; =
0.4,0.45,0.5,0.55,0.6 and K5/M, =0.2,0.3. We select the
parameter set achieving the lowest EER. The number of
genuine and impostor attempts used in the training process
is less than 1 percent of the total number of matching
attempts used for performance evaluation. The simplicity
of parameter tuning is one of the most important
advantages of the proposed iris recognition algorithm.

In the following, we summarize the experimental results
of the performance evaluation in the two versions of the

CASIA iris image databases and the ICE 2005 database. For
each database, we do not specify any training data set for
parameter optimization for the above-mentioned reasons.
Due to the simplicity of our algorithm, it seems relatively
easy for readers to reproduce the experimental results
described here in comparison with other typical feature-
based approaches:

e CASIA iris image version 1.0 database. This database
contains 756 gray-scale eye images (320 x 280 pixels)
with 108 unique eyes and 7 different images of
each eye. We first evaluate the genuine (intraclass)
matching scores for all the possible combinations
of genuine attempts. The number of attempts is
70y x 108 = 2,268. Next, we evaluate the impostor
(interclass) matching scores for all of the possible
combinations of impostor attempts. The number of
attempts is 756C2 — 2,268 = 283,122. Note that the
original pupil region of the iris image in this database
is edited by CASIA so that the pupil region has a
constant “dark” intensity value.® This kind of image
retouching may have an impact on the accuracy of the
performance evaluation. The inner boundary detec-
tion described in Section 2.1 becomes easy due to this
artificial modification. CASIA version 1.0 is one of the
most commonly used iris image databases for
evaluation purposes and there are many papers
reporting the experimental results on this database.
Thus, we use this database in order to compare our
experimental results with those reported in other
papers.

e CASIA iris image version 2.0 database (device 1).
This database contains 1,200 gray-scale eye images
(640 x 480 pixels) with 60 unique eyes and
20 different images of each eye. We first evaluate
the genuine (intraclass) matching scores for all of the
possible combinations of genuine attempts. The
number of attempts is 2C5 x 60 = 11,400. Next,
we evaluate the impostor (interclass) matching
scores for ¢Chy x 42 = 28,320 attempts, where we
take four images for each eye and make all of the
possible combinations of impostor attempts.

3. During the review process (in August 2006), CASIA released a new
database (version 3.0) in which the pupil regions of the iris images are not
edited. This database seems to be useful for our future study.
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e ICE 2005 database. This database contains 2,953 gray-
scale eye images (640 x 480 pixels) from 124 right
eyes and 120 left eyes (1,425 images are from the
right eyes and 1,528 images are from the left eyes).
In ICE 2005, NIST prepares two different experi-
ments: Experiment 1 (right iris and right iris
comparison) and Experiment 2 (left iris and left iris
comparison). In these experiments, we should
evaluate the genuine and impostor matching scores
for all the possible combinations. The number of
attempts are given as follows:

- Experiment 1: 12,214 genuine attempts and
1,002,386 impostor attempts.

- Experiment 2: 14,653 genuine attempts and
1,151,975 impostor attempts.

The ICE 2005 database seems to be one of the most

challenging iris databases, which includes a variety

of iris images with a significant degradation of

image quality. The use of the ICE 2005 database is a

reasonable approach for evaluating state-of-the-art

iris recognition algorithms.

In the experiments using the CASIA version 1.0
database, we compare the performance of the proposed
algorithms with those of other approaches published in [4],
[9]. In particular, [4] provides a comprehensive survey and
systematic performance evaluation of recent iris recogni-
tion algorithms and is useful for performance comparison.
Both papers are written by Tan et al., who are conducting
the CASIA Iris Image Database Project.

For more detailed performance comparison, we use the
publicly available Matlab source code of the iris recognition
algorithm using 1D log-Gabor filter [23]. This software has
been widely used for comparison purposes recently as a
Daugman-like algorithm (not exactly Daugman) which
produces 1D feature vectors, similar to iriscodes, from
individual iris images. In this source code, various para-
meters have already been optimized for the CASIA irisimage
version 1.0 database by the author. Thus, we can evaluate the
recognition performance directly on CASIA version 1.0. Fora
fair comparison of iris recognition performance, we utilize
the source code in two different ways: 1) The “original test”
performs comparison without any modification on the
source code and 2) the “modified test” uses the modified
source code, in which only the preprocessing stage is
modified to our method, while the matching stage remains
unchanged. Thus, the modified test allows us to compare
only the performance of matching stage.

For the experiments using the ICE 2005 database, we refer
to the results of the fully automatic test in ICE 2005
summarized by NIST [24] and compare the performance of
our algorithms with those of other state-of-the-art algo-
rithms. In ICE 2005, participants are requested to conduct the
experiments by using the ICE 2005 database by themselves
and to submit the results to NIST. Then, NIST evaluates the
performance of the participants’ algorithms based on the
submitted results. In our experiments, we follow the
instructions of the fully automatic test in ICE 2005 precisely.
Note that the main parameters K;/M; and K,/M, are
optimized in advance through a set of small training trials
using 1,098 genuine attempts and 861 impostor attempts. In
our experiments, the ROC curve and EER are used to
evaluate the matching performance. The ROC curve
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illustrates the False Non-Match Rate (FNMR, the prob-
ability that an authorized person is falsely rejected)
against the False Match Rate (FMR, the probability that
a nonauthorized person is falsely accepted as an author-
ized person) at different thresholds on the matching score.
EER indicates the error rate where FNMR and FMR are
equal. We evaluate the error rates statistically by using
the bootstrap technique [25], which is a nonparametric
method to estimate the confidence interval by random data
sampling. The bootstrap is only valid if the data is
independently and identically distributed. In a biometric
recognition system, however, there is statistical depen-
dence among matching scores due to the method of
collection of biometric samples. To deal with this kind of
dependent data, the modified version of the bootstrap,
called “subsets bootstrap,” has been proposed [26]. This
method groups the set of matching scores by subject or by
biometric entity (for example, finger or iris). In our
experiments, we use the entity-based subsets bootstrap to
calculate the confidence intervals of FNMR and FMR. The
procedure for obtaining the confidence interval of FNMR is
given as follows:

1. Divide the set of genuine matching scores X into
independent subsets Xi,---, X Neye by eye, where
Ny is the number of unique eyes.

2. Generate a bootstrap set X'={X],--- Xy }
many times by sampling N, subsets from X =
{X1,---, XN, } with replacement, where set X" may
contain any subset X; (i=1,---,N,.) multiple
times or no time. Compute the corresponding
bootstrap estimate FNMR" using the set X*.

We can calculate the confidence interval of FNMR by using
the set of FNMR". In our experiments, we repeat Step 2
1,000 times. The confidence interval of FMR is calculated
the same way. In the following, the ROC curves are plotted
with the 90 percent confidence intervals.

Fig. 16a shows the ROC curves of the proposed
algorithms for CASIA version 1.0, where the ROC curves
of the 1D log-Gabor-based approaches (the original and
modified tests) are also plotted for comparison. As
observed in the figure, the proposed algorithms exhibit
very low EERs (the baseline is 0.0032 percent, while, with
averaging, it is 0.0099 percent) and there is no overlap of
confidence intervals between the proposed algorithms and
1D log-Gabor-based approaches. This means that the
proposed algorithms achieve significantly higher discrimi-
nation capabilities than the 1D log-Gabor methods. The
reported values of EER from [4], [9] using the CASIA iris
image version 1.0 database are shown in Tables 1 and 2,
respectively. It should be noted that the experimental
conditions in [4], [9] are not the same as in our case because
the complete database is not available at CASIA [20] due to
the limitations on usage rights of the iris images. However,
the number of iris images accessible from the CASIA Web
site [20] (756 iris images) seems large enough for a
reasonable performance comparison. (Note that [4] em-
ploys 1,237 iris images.) Thus, the proposed algorithms
achieve a very low EER compared with other algorithms.

Fig. 16b shows the ROC curves of the proposed
algorithms for CASIA version 2.0. Although we cannot
find any reliable official report on recognition test for this
database, we believe that our result (EER = 0.58% for the
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Fig. 16. ROC curves and EERs. (a) The CASIA iris image version 1.0 database. (b) CASIA version 2.0. (c) The ICE 2005 database.

baseline algorithm and EER = 0.53% for the modified
algorithm with averaging) may be one of the best
performance records that can be achieved at this point.
Fig. 16c shows the ROC curves of the proposed
algorithms for the ICE 2005 database. NIST evaluates the
performance of the ICE 2005 participants’ algorithms by
verification rate (= 100%-FNMR) at FMR = 0.1%. Table 3
summarizes the ICE 2005 results reported by NIST [24]. It
should be noted that the numbers in Table 3 are read out
from the graphs in [24]. For a more detailed performance
comparison, the reader is referred to the ROC curves
shown in [24]. Note that we have participated in ICE 2005
(only Experiment 1) with our baseline algorithm and our

TABLE 1
Reported EERs from [4] (CASIA Version 1.0)
Method  EER [%]
Boles 8.13
Daugman 0.08
Ma 0.07
Tan 0.57
Wildes 1.76

result is labeled as “Tohoku” in the graphs in [24]. In
contrast to the experimental results with CASIA version 1.0,
the performance of the proposed baseline algorithm does
not come up to those of other sate-of-the-art iris recognition
algorithms. On the other hand, the modified algorithm with
averaging shows comparable performance to other algo-
rithms. The ICE 2005 participants are major players in iris
recognition, so it can be said that the performance results
listed in Table 3 are the world’s highest records at present.
This fact indicates that the phase-based iris recognition
algorithm exhibits the top-level performance, despite its
simplicity.

TABLE 2
Reported EERs from [9] (CASIA Version 1.0)
Method EER [%]

Daugman 0.70

Tan 0.51

Sun 0.86

Daugman + Sun 0.37

Tan + Sun 0.32

Daugman + Tan 0.49
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TABLE 3
Reported Results of ICE 2005 [24]

Group Verification rate at FMR=0.1% [%]
Experiment 1 Experiment 2

Carnegie Mellon University 99.6 99.1
Chinese Academy of Sciences 97.8 98.5
Indiana University, Purdue University, Indianapolis 79.9 76.6
Iritech 99.5 99.2
PELCO 96.8 96.6
SAGEM and Iridian Technologies Inc. 99.9 99.0
University of Cambridge 99.5 98.9
West Virginia University 97.8 96.8
Proposed (baseline) 93.2 87.5
Proposed (with averaging) 99.5 98.3

In the results of the ICE 2005 database, there is a
significant performance difference between the baseline
algorithm and the modified algorithm, while this difference
was not observed in the experiments with the CASIA
databases. This is mainly due to the fact that the quality of
the iris images differs considerably between the CASIA
databases and the ICE 2005 database. In the CASIA
databases, the iris images are collected under well-con-
trolled environments. On the other hand, the iris images in
the ICE 2005 database are captured under less constrained
conditions, so this database contains many challenging iris
images with disturbances (for example, defocusing, blur-
ring, and contact lens). For the ICE 2005 database, it is quite
difficult to improve genuine matching scores because the
image degradation causes serious differences between two
iris images, even for genuine attempts. Thus, a practical
approach to improving the recognition performance is to
reduce the impostor matching score. As explained in
Section 4.2, our modified algorithm contributes to reducing
the impostor matching scores by decreasing the noise floor
of the BLPOC function via spatial ensemble averaging. This
is a major reason that the modified algorithm shows higher
recognition performance than the baseline algorithm.

One of the difficult problems which is common to any
database is the mislocalization of the iris. The preproces-
sing algorithm presented in Section 2 works well for most
iris images used in our experiments, but, in some extreme
cases (such as that shown in Fig. 17), the algorithm fails to
segment the iris region. The mislocalization leads to the
undesirable distortion of the normalized iris image, which
reduces the height of correlation peak in genuine matching.

Fig. 17. Examples of mislocalization of the iris.

If the distortion is not significant, “precise matching with scale
correction,” as described in Section 4.1.4, is effective for
recovering the peak value. At any rate, the preprocessing
stage is important for achieving higher recognition perfor-
mance. This fact is indirectly suggested by the performance
analysis of 1D log-Gabor filter-based algorithms (shown in
Fig. 16a), where improving the preprocessing algorithm
gives a significant impact on the overall performance.

Consequently, the above-mentioned experimental trials
clearly demonstrate the potential possibility of phase-based
image matching for creating an efficient iris recognition
system. The proposed baseline algorithm achieves highly
accurate iris recognition with reduced computational com-
plexity and the modified algorithm exhibits a significantly
high performance, especially for degraded iris images.

6 IMPLEMENTATION-ORIENTED IRIS RECOGNITION

ALGORITHM

This section discusses the major implementation issues of our
algorithm. The proposed matching algorithm assumes the
use of iris images directly in the system to achieve high
recognition performance. In order to reduce the size of iris
data and to prevent the visibility of individual iris images, we
introduce here the idea of 2D FPC for representing iris
information. The 2D FPC is particularly useful for imple-
menting compact iris recognition devices using state-of-the-
art DSP technology. By changing the degree of quantization
in the 2D FPC, we can optimize the trade-off between the iris
data size and recognition performance flexibly while avoid-
ing the visibility of individual iris images.

The 2D FPC corresponds to the quantized version of the
phase spectrum of a normalized iris image, which is
essential for phase-based iris recognition. Instead of using
iris images directly, the system registers 2D FPCs as
biometric data. A major problem of this approach is that
the 2D FPC does not contain amplitude spectrum and the
actual iris image cannot be reconstructed from the 2D FPC.
This causes problems in the “effective region extraction” stage
and the “displacement alignment” stage in the flowchart
shown in Fig. 1 since these two stages should be performed
in the spatial image domain.



MIYAZAWA ET AL.: AN EFFECTIVE APPROACH FOR IRIS RECOGNITION USING PHASE-BASED IMAGE MATCHING

Input image
Database | A
(2D FPCs) ‘ Iris localization ‘ ©
()]
! #
Average ‘ Iris normalization ‘ o
amplitude ¢ B
(%]
| Eyelid masking | §
Amplitude Phase 1 05)-
s ir‘rtage syn:hesis Contrast enhancement a
(2D IDFT) (optional) v

Pseudo ifis image ‘Effectlve region extractlon‘ A

| Displacement alignment |

i

‘Matching score calculation‘

s the score
close to
threshold?

Matching stage

Precise matching with
scale correction

Y

Fig. 18. Flow diagram of the proposed algorithm using 2D FPCs.

Matching score

An idea for addressing this problem is to employ pseudo
iris images synthesized from the corresponding 2D FPCs in
the above two stages. The pseudo iris image preserves only
the phase information of the original iris image. As for
amplitude components, we use the average amplitude
spectrum computed from the given database. Formally, the
pseudo iris image f of an iris image f is defined as the 2D
IDFT of the pseudo complex spectrum F, whose amplitude
|F | is the average amplitude computed from many iris
images and whose phase /F' is given by the 2D FPC of the
iris image f.

Note here that we can use arbitrary chosen 2D amphtude
spectra for |F| to synthesize pseudo iris images. It is
important to find an adequate amplitude spectrum which
minimizes image distortion after the 2D IDFT. For example,
the constant amplitude spectrum |F| =1 is the simplest
choice. However, our experimental observation shows that
the use of the average amplitude spectrum exhibits much
higher performance than the constant amplitude spectrum.
Fig. 18 shows the flowchart of the iris recognition algorithm
using 2D FPCs.
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Fig. 19. Phase quantization. (a) Four-bit quantization. (b) Three-bit
quantization. (c) Two-bit quantization. (d) One-bit quantization.

In general, the phase spectrum of a natural image has
random values between —7 and 7. Therefore, the quantiza-
tion of phase components in the 2D FPC (Fig. 19) does not
have a significant impact on the overall recognition perfor-
mance. This property is particularly useful for reducing the
iris data size while keeping a sufficient level of performance.
In our original algorithm, the iris region is normalized into a
rectangular image block of 256 x 128 pixels. Assuming 8-bit
(256-level) quantization of pixel value, the total data size of an
iris image becomes 256 x 128 = 32 Kbytes. On the other
hand, the size of the 2D FPC with 4-bit quantization (Fig. 19a)
can be reduced to 8 Kbytes by utilizing the symmetry of the
phase spectrum. Similarly, the sizes of 2D FPCs with 3-bit,
2-bit, and 1-bit quantization are 6, 4, and 2 Kbytes,
respectively (Figs. 19b, 19¢, and 19d). Fig. 20 shows some
examples of 2D FPCs with different degrees of quantization.

The performances of iris recognition algorithms using
2D FPCs are evaluated for the CASIA iris image databases

Registered data

Fig. 20. 2D FPCs with different degrees of quantization. (a) Normalized iris image. (b) 2D FPC without quantization.

quantization. (d) 2D FPC with 2-bit quantization.

(c) 2D FPC with 4-bit
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Fig. 21. ROC curves and EERs for CASIA version 1.0 using 2D FPCs with various levels of quantization.

TABLE 4
EERs for Different Types of Biometric Data Representation in the CASIA and ICE 2005 Databases

Type of registered
biometric data

CASIA ver. 1.0 CASIA ver. 2.0

Normalized iris images 0.0032
2D FPCs with 4-bit quantization 0.18
2D FPCs with 2-bit quantization 0.57

EER [%]
ICE 2005 (Experiment 1)
0.53 0.33
0.61 0.54
0.77 0.83

(versions 1.0 and 2.0) and ICE 2005 database with various
levels of phase quantization. The experimental conditions
are the same as in Section 5. We use the baseline algorithm
(described in Section 4.1) for CASIA version 1.0 and the
modified algorithm (described in Section 4.2) for CASIA
version 2.0 and ICE 2005. As an example, Fig. 21 shows the
ROC curves for CASIA version 1.0 using 2D FPCs with
different degrees of quantization. Table 4 summarizes the
values of EER in the CASIA version 1.0, CASIA version 2.0,
and ICE 2005 databases for three different types of
biometric data representation: normalized iris images (used
in the original algorithms), 2D FPCs with 4-bit, and
2D FPCs with 2-bit quantization. Although the 2D FPC-
based algorithms exhibit higher EERs compared with the
original algorithms described in Section 4, their perfor-
mances with 4-bit quantization are still quite impressive.

These experimental results clearly demonstrate that
2D FPCs are particularly useful for implementing compact
iris recognition devices using the DSP technology. We are
now developing a very compact iris recognition device
using 2D FPCs. On the other hand, the original phase-based
iris recognition algorithm described in Section 4 is
particularly suitable for implementing high-accuracy iris
verification/identification systems, for which the recogni-
tion performance is a major concern.

7 CONCLUSION

Two major contributions of this paper can be summarized
as follows:

e An effective approach for phase-based iris recogni-
tion is proposed in Section 4. Experimental perfor-
mance evaluation using the CASIA iris image

databases (versions 1.0 and 2.0) and the ICE 2005
database clearly demonstrates that the use of the
Fourier phase spectra of iris images makes it
possible to achieve highly accurate iris recognition
with a simple matching algorithm.

e An implementation-oriented approach for phase-
based iris recognition is proposed in Section 6. In
order to reduce the size of registered iris data and to
prevent the visibility of individual iris images, we
introduce the idea of 2D FPC for representing iris
information. The 2D FPC is particularly useful for
implementing compact iris recognition devices
using embedded microprocessors having DSP func-
tionality. By changing the degree of phase quantiza-
tion, we can optimize the trade-off between the iris
data size and recognition performance in a highly
flexible manner.

We believe that the phase-based image matching
technique provides a unified framework for high-accuracy
biometric authentication. We have already developed
commercial fingerprint verification units using phase-
based image matching [13], [14], [15], [16], [17]. In this
paper, on the other hand, we have demonstrated that the
same approach is also highly effective for iris recognition.
Recently, we have also successfully applied the same
technique to palmprint recognition [27]. Thus, the phase-
based image matching provides a truly unified methodol-
ogy for fingerprint, palmprint, and iris recognition, which
will be particularly useful for developing multimodal
biometric applications in the future.

Another important point to be noted is that the
correlation-filter-based techniques for biometric authentica-
tion suggested by Vijaya Kumar et al.,, [8], [28], [29] are
closely related to our approach. They propose potential
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ideas for reducing the computational complexity in
correlation-based pattern recognition [30]. These techniques
seem to also be useful for our approach. Detailed investiga-
tions in this direction are left for our future study.
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