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Abstract

Volume registration is an essential technology for
comparing medical volume data acquired in different
days and for combining different types of volume data
from various imaging devices. For accurate compar-
ison, it is necessary to correct non-rigid deformation
between volume data, since the complex deformation
between medical volume data is observed even if they
are taken from the same regions of the subject. This pa-
per proposes a novel non-rigid registration method us-
ing 3D Phase-Only Correlation (POC). The proposed
method achieves accurate and fast volume registration
by employing POC-based block matching (with small
volume blocks), which can find the voxel correspon-
dence with sub-voxel accuracy between two volume
data. The proposed method exhibits higher accuracy
and shorter computation time compared with the con-
ventional method, and is effective even for multimodal-
ity cases such as CT-MRI registration.

1 Introduction

Registration between medical volume data such as
Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI) is one of the important techniques in
the field of medical image processing. The complex
deformation between medical volume data is observed
due to soft organs, imaging devices, temporal change of
organs, etc. even if they are taken from the same re-
gions of the subject. To compare volume data acquired
in different days or combine different types of volume
data from various imaging devices, the accurate and fast
non-rigid volume registration method is required.

The most of conventional methods are based on
maximization or minimization of the similarity mea-
sures such as Normalized Mutual Information (NMI)
[4], Residual Complexity (RC) [3] and the Jesen-Tsallis

(JT) similarity [1]. These methods need to estimate pa-
rameters of the non-rigid deformation model by solv-
ing a large-scale nonlinear optimization problem. It is
a very time-consuming task and is not suitable for the
practical situation.

Addressing this problem, this paper proposes a novel
volume registration method using 3D Phase-Only Cor-
relation (POC) [5]. 3D POC is a volume matching
technique using the phase components in 3D Discrete
Fourier Transforms (DFTs) of given volumes. The pro-
posed method consists of (i) correspondence matching
using a coarse-to-fine strategy and 3D POC-based local
voxel matching and (ii) deformation correction using B-
spline model. Through a set of experiments using actu-
ally scanned CT and MRI data, we demonstrate the ef-
fectiveness of the proposed method compared with the
conventional method.

2 Non-Rigid Registration Using 3D
Phase-Only Correlation

The proposed method consists of the following 2
steps: (i) correspondence search using 3D POC and
(ii) deformation correction using B-spline model. In
the step (i), we obtain the correspondence with sub-
voxel accuracy between the two volume data using the
3D POC-based correspondence matching. In the step
(ii), we estimate the parameters of B-spline model us-
ing the correspondence obtained from the step (i), and
then align the two volume data using the B-spline model
with the estimated parameters. In the following, we de-
scribe the three key techniques of the proposed method
such as (i) 3D POC, (ii) correspondence serach using
3D POC and (iii) non-rigid deformation using B-spline.

2.1 3D POC

We introduce the fundamentals of a 3D POC func-
tion, which is the extended version of 2D POC func-
tion [5]. Consider two volume data f(n1, n2, n3) and
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Figure 1. Correspondence search using
coarse-to-fine strategy for lmax = 3.

g(n1, n2, n3), and their 3D DFTs F (k1, k2, k3) and
G(k1, k2, k3). Then, the normalized cross-power spec-
trum R(k1, k2, k3) is define as

R(k1, k2, k3) =
F (k1, k2, k3)G(k1, k2, k3)

|F (k1, k2, k3)G(k1, k2, k3)|
, (1)

where G(k1, k2, k3) denotes the complex conjugate of
G(k1, k2, k3). The 3D POC function r(n1, n2, n3) is
the 3D Inverse DFT of R(k1, k2, k3). When two vol-
ume data are similar, their POC function gives a dis-
tinct sharp peak like the Kronecker delta function. The
height of the peak can be used as a good similarity mea-
sure for volume matching, and the location of the peak
shows the transnational displacement between the two
volume data. We can estimate the true peak position
with sub-voxel accuracy by fitting the analytical peak
model of the 3D POC function to the calculated data ar-
ray around the correlation peak as well as the 2D POC
function [5].

2.2 Correspondence Search Using 3D POC

In order to correct non-rigid deformation between
volume data, we have to find the accurate correspon-
dence between volume data. We employ the corre-
spondence search algorithm combining a coarse-to-fine
strategy using image pyramids and local voxel match-
ing using 3D POC. This algorithm finds the point q =
(q1, q2, q3) on the volume data J corresponding to the
reference point p = (p1, p2, p3) on the volume data I
with sub-voxel accuracy. The followings are detailed
procedure of this algorithm (Fig. 1).
Step 1: For l = 1, 2, · · · , lmax, create l-th layer volume

data I l and J l, i.e., coarser versions of I0(= I) and
J0(= J) by recursively reducing I0 and J0 by 1/2.
Step 2: For every layer, calculate the coordinate
pl = (pl1, p

l
2, p

l
3) corresponding to the original refer-

ence point p0(= p) recursively as follows:

pl = (�2−lp1�, �2−lp2�, �2−lp3�), (2)

where �z� denotes the operation to round the element
of z to the nearest integer towards minus infinity. We
assume that qlmax = plmax in the coarsest layer. Let
l = lmax − 1.
Step 3: From l-th layer volumes I l and J l, extract two
small 3D blocks f l and gl with their centers on pl and
2ql+1, respectively. The size of 3D blocks is W ×W ×
W voxels. In this paper, we employ W = 32.
Step 4: Estimate the displacement between f l and gl

with voxel accuracy using 3D POC. Let the estimated
displacement vector be δl. The l-th layer correspon-
dence ql is determined as follows:

ql = 2ql+1 + δl. (3)

Step 5: Decrement the counter by 1 as l = l − 1 and
repeat from Step 3 to Step 5 while l ≥ 0.
Step 6: From the original volumes I0 and J0, extract
two small 3D blocks with their centers on p0 and q0, re-
spectively. Estimate the displacement between the two
blocks with sub-voxel accuracy using 3D POC. Let the
estimated displacement vector with sub-voxel accuracy
be denoted by δ. Update the corresponding points as
follows:

q = q0 + δ. (4)

Also, the peak value of the 3D POC function is obtained
as a measure of reliability in local block matching. In
the proposed method, we set many reference points on
I and find their corresponding points on J .

2.3 Non-Rigid Deformation Using B-spline

We employ B-spline to correct the non-rigid defor-
mation between the two volume data. B-spline is rep-
resented by linear combination of the Gaussian-like
functions called the B-spline basis functions. Let the
center of the basis functions (knot) be tm1,m2,m3 =
(tm1 , tm2 , tm3), where m1 = 0, · · · ,K1 − 1, m2 =
0, · · · ,K2 − 1, m3 = 0, · · · ,K3 − 1, and K1, K2 and
K3 indicate the number of knots for each axis direction.
We put tm1,m2,m3 in a lattice pattern with a spacing of
h1, h2 and h3 for each axis direction. Consider the real-
number coordinate x = [x1 x2 x3]

T , the 3rd-order B-
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spline basis function Bm1,m2,m3(x) is defined by

Bm1,m2,m3(x) =

b

(
x1 − tm1

h1

)
b

(
x2 − tm2

h2

)
b

(
x3 − tm3

h3

)
, (5)

where

b(x) =

⎧⎨
⎩

(3|x|3 − 6|x|2 + 4)/6 (|x| ≤ 1)
−(|x| − 2)3/6 (1 ≤ |x| ≤ 2)
0 (2 ≤ |x|)

.

For convenience, we replace the index of knots
(m1,m2,m3) by j = m1 + m2K1 + m3K1K2. The
B-spline function T (x) is given by

T (x) =

K1K2K3−1∑
j=0

Bj(x)aj, (6)

whereaj = [aj1 aj2 aj3]
T indicates the weight (control

point) for each knots.
To determine the B-spline function T (x), the weight

aj is estimated from the corresponding point pairs pi

and qi, where i = 0, · · · , N − 1 and N is the num-
ber of corresponding point pairs. The optimal weight
âj is obtained by minimizing the distance between the
reference point after deformation pi + T (pi) and the
corresponding point qi as follows:

âj = arg min
aj

∑
i

||qi − (pi + T (pi))||2 (7)

Using Tikhonov regularization, the least squares solu-
tion of the above equation is given by

â = (BTB + μI)B−1(Q− P ), (8)

where â = [â0 · · · âK1K2K3−1]
T , P =

[p0 · · · pN−1]
T , Q = [q0 · · · qN−1]

T , B is the
N ×K1K2K3 matrix with the element Bij = Bj(pi),
μ is a coefficient. In the experiment, we employ μ = 1.
The coordinate n′

I of the reference volume data I(nI

after registration is calculated by

n′
I = nI + T (nI). (9)

In this paper, we employ liner interpolation to generate
the volume data after non-rigid registration.

3 Experiment

We evaluate the registration accuracy of the conven-
tional and proposed methods using CT and MRI data.
We use the non-rigid registration method proposed by
Rueckert et al. [4] as the conventional method. This

(a) (b)

(c) (d)

Figure 2. Registration results: (a) original
CT data, (b) deformed data, (c) registra-
tion result using the conventional method
and (d) registration result using the pro-
posed method.

method is based on maximization of NMI (Normalized
Mutual Information) between volume data. The number
of the knots for both methods is K1 = K2 = K3 = 8.

We perform the quantitative evaluation using the
original and deformed CT data. Let the original CT
data be A(x) with 128× 128× 128 voxels and 1.872×
1.872 × 1.872 mm resolution as shown in Fig. 2 (a).
The deformed CT data B(x) as shown in Fig. 2 (b) is
generated by

B(x) = A(x+ Ts(x)), (10)

where

Ts(x) =

ν∑
k=1

αk exp(||x− βk||2/2σ2
k), (11)

where ν = 16, 0 ≤ σk ≤ 64, αk ∈ [−8, 8]3,βk ∈
[1, 128]3. By randomly changing σk, αk and βk within
the above range, we obtain 8 deformed CT data B(x).
After non-rigid registration using the conventional and
proposed methods, we evaluate the registration accu-
racy by Root Mean Square (RMS) error between the
true deformation function Ts and the estimated defor-
mation function Te as follows:

RMS =

√
1

|C|
∑
n∈C

||Ts(n)− Te(n)||2, (12)
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Figure 3. RMS errors for the conventional
and proposed methods.

where C is a set of coordinates and |C| is the number
of voxels within C. In this experiment, we set C to the
region excluding the air from A. Figs. 2 (c) and (d)
show the contour of deformed data B after registration
and the slice image of the original data A. Fig. 3 shows
RMS errors for each method. The conventional method
cannot correctly align the CT data, while the proposed
method can align deformed CT data with about 1-voxel
error. The computation time is measured on Intel Xeon
(3.00 MHz) with MATLAB 7.4 (64 bit). The average
computation time of each method is 21,178 sec. for
the conventional method and 163 sec. for the proposed
method, respectively. From the above experiments, the
proposed method exhibits higher accuracy and shorter
computation time than the conventional method.

We apply the proposed method to multi-modal regis-
tration. We use CT and MRI volume data taken from the
same subject as shown in Figs. 4 (a) and (b), where each
data is 512×512×512 voxels and 0.468×0.468×0.468
mm resolution. Fig. 4 (c) shows the contour of CT data
and the slice image of MRI data after rigid registration
using 3D POC [2]. Fig. 4 (d) shows the result using
the proposed method. Misalignment around the neck is
observed in the case of rigid registration, while the pro-
posed method can correctly align the CT and MRI data.
As a result, the proposed method is also effective for
multi-modal registration.

4 Conclusion

This paper has proposed a non-rigid volume regis-
tration method using 3D POC. Through a set of ex-
periments, we demonstrate that the proposed method
exhibits higher accuracy and shorter computation time
than the conventional method. In future work, we will

(a)

(c)

(d)

(b)

Figure 4. Registration result of CT and
MRI data: (a) CT data, (b) MRI data, (c) re-
sult after rigid registration and (d) result
after non-rigid registration.

apply the proposed method to human identification us-
ing medical volume data.
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