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This paper proposes a Finger-Knuckle-Print (FKP) recognition algorithm using Band-Lim-
ited Phase-Only Correlation (BLPOC)-based local block matching. The phase information
obtained from 2D Discrete Fourier Transform (DFT) of images contains important informa-
tion of image representation. The phase-based image matching, especially BLPOC-based
image matching, is successfully applied to image recognition tasks for biometric recogni-
tion applications. To calculate the matching score, the proposed algorithm corrects the glo-
bal and local deformation between FKP images using phase-based correspondence
matching and the BLPOC-based local block matching, respectively. Experimental evalua-
tion using the PolyU FKP database demonstrates the efficient recognition performance of
the proposed algorithm compared with the state-of-the-art conventional algorithms.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Biometric authentication has been receiving extensive attention with the need for robust human recognition techniques
in various networked applications [1]. Biometric authentication (or simply biometrics) is to identify a person based on the
physiological or behavioral characteristics such as fingerprint, face, iris, voice, and signature.

Among many biometric techniques, hand-based biometrics has been attracted lots of attention. Fingerprint [2], palmprint
[3–6], hand geometry [7], Finger-Knuckle-Print (FKP) [8–22], and combinations of the above traits [23,24] have been used as
biometric traits related to a hand. In this paper, we focus on recognizing a person using FKP patterns. An FKP is a pattern of
outer finger knuckle surface which contains many fine ridge patterns and texture, and is expected to be one of the distinctive
biometric traits.

So far, the FKP recognition algorithms have been proposed by many researchers as shown in Table 1. Woodard and Flynn
[8] have proposed a curvature-based recognition algorithm using 3D finger surface taken by a 3D sensor, where this is the
first attempt to use FKPs for biometric authentication. The use of the 3D sensor is not acceptable for the practical use due to
its size, cost, weight, processing time, etc. On the other hand, the use of 2D FKP images makes it possible to realize compact
and powerful biometric authentication systems. Ferrer et al. [9] have proposed a ridge feature-based algorithm which ex-
tracts ridge features from FKP images and evaluates their similarity using Hidden Markov Model (HMM) or Support Vector
Machine (SVM). Kumar and Zhou have proposed a coding-based algorithm called KnuckleCode generated by using local Ra-
don transform [12] and subspace-based algorithms such as Principal Component Analysis (PCA), Independent Component
Analysis (ICA) and Linear Discriminant Analysis (LDA) [13]. Kumar [20] has proposed to use not only the finger knuckle pat-
tern on the second joint, i.e., the metacarpophalangeal joint, but also the finger knuckle pattern on the first joint, i.e., the
distal interphalangeal joint. Xiong et al. [15] have used Local Gabor Binary Patterns (LGBP) combining Gabor wavelet and
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Table 1
Summary of conventional FKP recognition algorithms.

Author Trait Feature Similarity

Woodard and Flynn [8] 3D knuckle Surface curvature NCC
Ferrer et al. [9] FKP Ridge HMM or SVM
Kumar and Zhou [12] FKP Localized Radon transform Distance
Kumar and Ravikanth [13] FKP texture PCA, ICA and LDA
Kumar [20] Major and minor knuckle LBP, Log-Gabor Distance
Xiong et al. [15] FKP Local Gabor binary patterns Distance
Morales et al. [16] FKP Gabor filter and SIFT Distance
Zhang et al. [10] FKP Competitive code Distance
Zhang et al. [11] FKP BLPOC Correlation
Zhang et al. [14] FKP Improved competitive code and magnitude code Distance
Zhang et al. [17] FKP Competitive code and BLPOC Distance
Zhang et al. [18] FKP Phase congruency and BLPOC Distance
Zhang and Li [22] FKP RCode1 and RCode2 Distance
Zichao et al. [19] FKP Orientation Distance
Mittal et al. [21] FKP DAISY Distance

Michael et al. [23] Palmprint and FKP Directional code Distance
Zhu and Zhang [24] Finger geometry, palmprint and FKP Gradient Correlation
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Local Binary Patterns (LBPs) which are successfully applied to face recognition. Morales et al. [16] have used Orientation En-
hanced Scale Invariant Feature Transform (OE-SIFT) which applies a Gabor filter to enhance the FKP images and perform
SIFT-based matching to evaluate the similarity. Zhang et al. have proposed some FKP recognition algorithms using the com-
petitive code generated by using Gabor filter bank [10], Band-Limited Phase-Only Correlation (BLPOC) [11], a combination
method of improved competitive code and magnitude code [14], a combination method of competitive code and BLPOC
[17], a combination method of phase congruency and BLPOC [18], and the Riesz transform based coding scheme [22]. Zichao
et al. [19] have proposed a feature extraction method using steerable filters which can extract local orientation from FKP
images. Mittal et al. [21] have proposed an FKP recognition algorithm using DAISY [25] which is one of the famous feature
descriptors. In addition, the multi-modal hand-based recognition algorithms have been proposed [23,24]. Michael et al. [23]
have developed a hand recognition system using palmprint and FKP, while Zhu and Zhang [24] have used finger geometry,
palmprint and FKP. The recognition performance of the conventional FKP recognition algorithms may be degraded for FKP
images having nonlinear deformation due to the movement of a finger, since these algorithms consider only rigid body trans-
formation of FKP images.

In this paper, we propose an FKP recognition algorithm using BLPOC-based local block matching. POC is an image match-
ing technique using the phase components in 2D Discrete Fourier Transforms (2D DFTs) of given images [26,27]. BLPOC is a
modified version of POC which is dedicated to evaluate similarity between images [28] and has been used in various biomet-
ric recognition algorithms [29,30,11]. Most of POC-based biometric recognition algorithms cannot handle the nonlinear
deformation of images, since the phase information obtained from the entire image is employed. In order to handle the non-
linear deformation of FKP images, the proposed algorithm employs local block matching using BLPOC, since the nonlinear
deformation is approximately represented by the minute translational displacement between local image blocks. First, we
correct the global transformation between FKP images which is estimated using phase-based correspondence matching.
Next, we correct the minute translational displacement between each local image block pair using the BLPOC-based local
block matching. Finally, we take the average of a set of the BLPOC functions calculated from each local image block pair
and obtain the correlation peak value of the average BLPOC function as a matching score between the FKP images. Experi-
mental evaluation using the PolyU FKP database [31] demonstrates efficient recognition performance of the proposed algo-
rithm compared with the state-of-the-art conventional algorithms.

The rest of the paper is organized as follows: Section 2 describes the fundamentals of POC, BLPOC and phase-based cor-
respondence matching. Section 3 describes FKP recognition algorithms using phase-based image matching and the proposed
algorithm. Section 4 shows experiments for evaluating the performance of the proposed algorithm using the PolyU FKP data-
base. Section 5 ends with some concluding remarks.
2. Phase-based image matching

This section describes the fundamentals of phase-based image matching, i.e., Phase-Only Correlation (POC), Band-Limited
POC (BLPOC) and phase-based correspondence matching.
2.1. Phase-Only Correlation (POC)

We introduce the principle of a Phase-Only Correlation (POC) function (which is sometimes called the ‘‘phase-correlation
function’’) [26,27].
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Consider two N1 � N2 images, f(n1, n2) and g(n1, n2), where we assume that the index ranges are n1 = �M1, . . . ,M1(M1 > 0)
and n2 = �M2, . . . ,M2 (M2 > 0) for mathematical simplicity, and hence N1 = 2M1 + 1 and N2 = 2M2 + 1. The discussion could be
easily generalized to non-negative index ranges with power-of-two image size. Let F(k1, k2) and G(k1, k2) denote the 2D DFTs
of f(n1, n2) and g(n1, n2), respectively. According to the definition of DFT [32], F(k1, k2) and G(k1, k2) are given by
Fðk1; k2Þ ¼
X
n1 ;n2

f ðn1; n2ÞWk1n1
N1

Wk2n2
N2
¼ AFðk1; k2ÞejhF ðk1 ;k2Þ; ð1Þ

Gðk1; k2Þ ¼
X
n1 ;n2

gðn1;n2ÞWk1n1
N1

Wk2n2
N2
¼ AGðk1; k2ÞejhGðk1 ;k2Þ; ð2Þ
respectively, where k1 = �M1, . . . ,M1, k2 = �M2, . . . ,M2, WN1 ¼ e�j2p
N1 ;WN2 ¼ e�j2p

N2 , and
P

n1 ;n2
denotes

PM1
n1¼�M1

PM2
n2¼�M2

. AF(k1, k2)

and AG(k1, k2) are amplitude, and hF(k1, k2) and hG(k1, k2) are phase. The normalized cross power spectrum RFG(k1, k2) is given
by
RFGðk1; k2Þ ¼
Fðk1; k2ÞGðk1; k2Þ
jFðk1; k2ÞGðk1; k2Þj

¼ ejhðk1 ;k2Þ; ð3Þ
where Gðk1; k2Þ is the complex conjugate of G(k1, k2) and h(k1, k2) denotes the phase difference hF(k1, k2) � hG(k1, k2). The POC
function rfg(n1, n2) is the 2D Inverse DFT (2D IDFT) of RFG(k1, k2) and is given by
rfgðn1;n2Þ ¼
1

N1N2

X
k1 ;k2

RFGðk1; k2ÞW�k1n1
N1

W�k2n2
N2

; ð4Þ
where
P

k1 ;k2
denotes

PM1
k1¼�M1

PM2
k2¼�M2

. When two images are similar, their POC function gives a distinct sharp peak. When
two images are not similar, the peak drops significantly. The height of the peak gives a good similarity measure for image
matching, and the location of the peak shows the translational displacement between the images.

We have proposed a high-accuracy translational displacement estimation method, which employs (i) an analytical func-
tion fitting technique to estimate the sub-pixel position of the correlation peak, (ii) a windowing technique to eliminate the
effect of periodicity in 2D DFT, and (iii) a spectrum weighting technique to reduce the effect of aliasing and noise [27].

2.2. Band-Limited POC (BLPOC)

We have proposed a BLPOC (Band-Limited Phase-Only Correlation) function [28] dedicated to biometric recognition tasks.
The idea to improve the matching performance is to eliminate meaningless high frequency components in the calculation of
normalized cross power spectrum RFG depending on the inherent frequency components of images. Assume that the ranges
of the inherent frequency band are given by k1 = �K1, . . . ,K1 and k2 = �K2, . . . ,K2, where 0 6 K1 6M1 and 0 6 K2 6M2. Thus,
the effective size of frequency spectrum is given by L1 = 2K1 + 1 and L2 = 2K2 + 1. The BLPOC function is given by
rK1K2
fg ðn1;n2Þ ¼

1
L1L2

X
k1 ;k2

0
RFGðk1; k2ÞW�k1n1

L1
W�k2n2

L2
; ð5Þ
where n1 = �K1, . . . ,K1, n2 = �K2, . . . ,K2, and
P0

k1 ;k2
denotes

PK1
k1¼�K1

PK2
k2¼�K2

. Note that the maximum value of the correlation
peak of the BLPOC function is always normalized to 1 and does not depend on L1 and L2.

2.3. Phase-based correspondence matching

In order to handle the nonlinear deformation of FKP images, we employ the sub-pixel correspondence matching using
POC [33], which employs (i) a coarse-to-fine strategy using image pyramids for robust correspondence search and (ii) a
sub-pixel translational displacement estimation method using POC for local block matching. Let p be a coordinate vector
of a reference pixel in the reference image I(n1, n2). The problem of sub-pixel correspondence search is to find a real-number
coordinate vector q in the input image J(n1, n2) that corresponds to the reference pixel p in I(n1, n2). We briefly explain the
procedure as follows.

Step 1: For l = 1,2, . . . , lmax, create the lth layer images Il(n1, n2) and Jl(n1, n2), i.e., coarser versions of I0(n1, n2) (= I(n1, n2))
and J0(n1, n2) (= J(n1, n2)), recursively as follows:
Ilðn1;n2Þ ¼
1
4

X1

i1¼0

X1

i2¼0

Il�1ð2n1 þ i1;2n2 þ i2Þ; ð6Þ

Jlðn1;n2Þ ¼
1
4

X1

i1¼0

X1

i2¼0

Jl�1ð2n1 þ i1;2n2 þ i2Þ: ð7Þ



56 S. Aoyama et al. / Information Sciences 268 (2014) 53–64
Step 2: Estimate the displacement between Ilmax ðn1;n2Þ and Jlmax
ðn1;n2Þwith pixel accuracy using POC-based image match-

ing. Let the estimated displacement vector be dlmax .
Step 3: For every layer l = 1,2, . . . , lmax, calculate the coordinate pl = (pl,1, pl,2) corresponding to the original reference point
p0 (= p) recursively as follows:

pl ¼
1
2

pl�1

� �
¼ 1

2
pl�1;1

� �
;

1
2

pl�1;2

� �� �
; ð8Þ

where bzc denotes the operation to round the element of z to the nearest integer towards minus infinity.
Step 4: We assume that qlmax

¼ plmax
þ dlmax in the coarsest layer. Let l = lmax � 1.

Step 5: From the lth layer images Il(n1, n2) and Jl(n1, n2), extract two sub-images (or image blocks) fl(n1, n2) and gl(n1, n2)
with their centers on pl and 2ql+1, respectively. The size of image blocks is Wc �Wc pixels.
Step 6: Estimate the displacement between fl(n1, n2) and gl(n1, n2) with pixel accuracy using POC-based image matching.
Let the estimated displacement vector be dl. The lth layer correspondence ql is determined as follows:
ql ¼ 2qlþ1 þ dl: ð9Þ

Step 7: Decrement the counter by 1 as l l � 1 and repeat from Step 5 to Step 7 while l P 0.
Step 8: From the original images I0(n1, n2) and J0(n1, n2), extract two image blocks with their centers on p0 and q0, respec-
tively. Estimate the displacement between the two blocks with sub-pixel accuracy using POC-based image matching. Let
the estimated displacement vector with sub-pixel accuracy be denoted by d = (d1, d2). Update the corresponding point as
follows:

q ¼ q0 þ d: ð10Þ

The peak value of the POC function is also obtained as a measure of reliability in local block matching.

3. FKP recognition algorithms using phase-based image matching

This section presents the conventional POC-based FKP recognition algorithms: (A) the FKP recognition algorithm using
BLPOC [11] and (B) the FKP recognition algorithm using phase-based correspondence matching [34]. Then, we describe
(C) the FKP recognition algorithm using BLPOC-based local block matching which is proposed in this paper.

3.1. FKP recognition algorithm using BLPOC [11]

This algorithm is based on the global registration of FKP images using BLPOC.
The Region Of Interest (ROI) is extracted from the FKP image in the preprocessing. The translational displacement be-

tween the two ROI images is estimated using BLPOC and the two images are aligned according to the estimated displace-
ment. Then, the common region of the two images is extracted. For example, Fig. 1(a) and (b) shows the registered and
input FKP ROI images, and Fig. 1(c) and (d) shows their common regions. If the area ratio of the common region between
the ROI images is below the threshold, the BLPOC function between the ROI images is calculated. Otherwise, the BLPOC func-
tion between the common regions is calculated. Finally, the highest peak value of the BLPOC function is obtained as the
matching score between the two FKP images. Fig. 1(e) shows the BLPOC function between the FKP ROI images, while
Fig. 1(f) shows the BLPOC function between the common regions. As a result, the use of the BLPOC function between com-
mon regions makes it possible to enhance the matching performance compared with the BLPOC function between the ori-
ginal images.

Local Global Information Combination (LGIC) [17] and LGIC2 [18] have been proposed as the extended version of this algo-
rithm. LGIC and LGIC2 combine global and local similarities to calculate the matching score between ROI images. For both
algorithms, the FKP recognition algorithm using BLPOC is employed to evaluate the global similarity between ROI images.
To evaluate the local similarity between ROI images, LGIC employs CompCode, while LGIC2 employs local phase and phase
congruency. Both algorithms improve the performance of FKP recognition to combine the complementary information.

These algorithms consider only the global translational displacement between FKP images. Hence, the recognition perfor-
mance of this algorithm is significantly dropped for FKP images having nonlinear deformation.

3.2. FKP recognition algorithm using phase-based correspondence matching [34]

This algorithm is based on the local registration of FKP images using phase-based correspondence matching which has
been successfully applied to palmprint recognition algorithm [34].

The ROI image is extracted from the FKP image in the preprocessing. The 90 reference points are placed on the registered
image and then the corresponding points on the input image are estimated using the phase-based correspondence matching
as shown in Fig. 2(a) and (b). Then BLPOC functions between the local image blocks with their centers on corresponding
point pairs are calculated. Finally, the matching score is calculated as the highest peak value of the average BLPOC function
obtained from a set of BLPOC functions. To take the average of a set of BLPOC functions, the PNR (Peak-to-Noise Ratio) of the
BLPOC function can be improved as shown in Fig. 2(c) and (d).
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Fig. 1. Example of FKP recognition using BLPOC: (a) registered image, (b) input image, (c) common region of the registered image, (d) common region of the
input image, (e) BLPOC function between FKP images (a) and (b), and (f) BLPOC function between common regions (c) and (d).
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This algorithm can handle the nonlinear deformation of FKP images. However, the recognition performance of this algo-
rithm may drop due to poor texture around the knuckle joint and the large movement of a finger, since the average BLPOC
function is calculated from all the corresponding point pairs regardless of the reliability of correspondence.

3.3. Proposed FKP recognition algorithm

Sometimes, the FKP images include large deformation due to the movement of fingers. In order to handle the large defor-
mation, the proposed algorithm employs global and local registration of FKP images using phase-based local block matching.

The ROI image is extracted from the FKP image in the preprocessing. The 90 reference points are placed on the registered
image and the corresponding points on the input image are estimated using phase-based correspondence matching as
shown in Fig. 3(a) and (b). To correct the global transformation between the images, we employ the affine transformation.

In the case of FKP images, the deformation is different between the left- and right-half regions of the knuckle joint. Hence,
we estimate the parameters of the affine transformation for each region, and then normalize the affine transformation be-
tween the registered and input images. The parameters of the affine transformation are estimated using the reliable corre-
sponding point pairs whose similarities, i.e., the peak value of the POC function, are above the threshold th. Let the reliable
corresponding point pairs of the left-half region be pL in the registered image and qL in the input image, respectively, and let
the reliable corresponding point pairs of the right-half region be pR in the registered image and qR in the input image, respec-
tively as shown in Fig. 3(a) and (b). The transformation matrices between the corresponding point pairs for the left- and
right-half regions are defined by
AL ¼
aL

11 aL
12 aL

13

aL
21 aL

22 aL
23

0 0 1

2
64

3
75 ð11Þ
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Fig. 2. Example of FKP recognition using phase-based correspondence matching: (a) reference points on the registered image, (b) corresponding points on
the input image, (c) BLPOC function between a local image block pair, and (d) average BLPOC function.
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Fig. 3. Example of the proposed algorithm: (a) reference points on the registered image for global registration, (b) corresponding points on input image,
where ‘‘+’’ in (a) and (b) indicates the reliable corresponding pairs whose similarities are above the threshold th, (c) reference points on the registered image
for local registration and an example of a local image block, (d) the corresponding points on the left half of the input image after global registration with AL,
and (e) the corresponding points on the right half of the input image after global registration with AR, where ‘‘�’’ and ‘‘+’’ in (d) and (e) indicate the
corresponding points before and after local registration, respectively.
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and
Fig. 4.
AR ¼
aR

11 aR
12 aR

13

aR
21 aR

22 aR
23

0 0 1

2
64

3
75; ð12Þ
respectively. The relation between the corresponding point pairs for the left- and right-half regions can be written as
�qL ¼ AL�pL; ð13Þ
�qR ¼ AR�pR; ð14Þ
respectively, where �z indicates the homogeneous vector of z. The parameters of AL and AR are estimated by solving a set of
linear simultaneous equations as the linear least-squares problem. We normalize the global deformation between the
images using the estimated affine transformation matrices for each region. Fig. 3(d) and (e) shows the FKP images after glo-
bal registration of left- and right-half regions, respectively.

Then, we calculate the matching score in consideration of nonlinear deformation. We assume that the nonlinear defor-
mation is approximately represented by the minute translational displacement between local image blocks. First, the 18 lo-
cal image blocks are extracted from the registered image as shown in Fig. 3(c). The 9 local image blocks on the left half of the
image are for the left-half region of the FKP image, while the 9 blocks on the right half of the image are for the right-half
region of the FKP image. The local block images of the input image are also extracted from the same position of the registered
image. The translational displacement between each local image block pair is estimated using BLPOC, and then the local
block images on the registered image are extracted in consideration of the estimated translational displacement as shown
in Fig. 3(d). We calculate the BLPOC function between each local block image pair and take the average of a set of the BLPOC
functions. Finally, the matching score between the FKP images is obtained as the highest peak value of the average BLPOC
function.

As mentioned above, it is expected that the proposed algorithm is robust against the nonlinear deformation of FKP images
compared with the conventional algorithms [11,17,18,34] described in Sections 3.1 and 3.2. Ref. [11] aligns only the global
translational displacement between ROI images estimated by BLPOC. Refs. [17,18] also align only the global translational dis-
placement estimated by BLPOC, and then calculate the matching score using the global and local similarities between ROI
images. Ref. [34] considers the local translational displacement between local block images to calculate the matching score
between ROI images, where the structure of fingers is not always considered. On the other hand, the proposed algorithm
normalizes the deformation between ROI images in consideration of the structure of fingers, and then calculates the match-
ing score.
4. Experiments and discussion

This section describes a set of experiments using the PolyU FKP database [31] for evaluating the performance of the FKP
recognition algorithms. First, we compare the three FKP recognition algorithms using the phase-based image matching de-
scribed in Section 3: (A) the FKP recognition algorithm using BLPOC [11], (B) the FKP recognition algorithm using phase-
based correspondence matching [34], and (C) the proposed algorithm. Then, we compare the performance of the proposed
algorithm with the state-of-the-art conventional algorithms. Next, we consider the use of multiple FKP images to recognize a
person using the PolyU FKP database.

The PolyU FKP database consists of 7920 images (384 � 288 pixels) with 165 subjects and 6 different images for each of
the left index finger, the left middle finger, the right index finger and the right middle finger in 2 separate sessions. In the
experiment, the images in the first session belong to the gallery set, while the images in the second session belong to the
probe set, where each session consists of 660 (165 � 4) classes and 3960 (660 � 6) images. In the PolyU FKP database,
Examples of FKP ROI images in the PolyU FKP database: FKP image pairs with different lighting condition (a) and nonlinear deformation (b) and (c).
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ROI images extracted by the method proposed in Ref. [14] are also included, where the image size of ROI is 220 � 110 pixels.
To compare the matching performance of the proposed method with the conventional methods reported in literature, we use
the ROI images in the experiments. Fig. 4 shows some examples of FKP ROI images in this database. As shown in this figure,
FKP images in the database are captured under different lighting condition and have rotation, translation and nonlinear dis-
tortion due to the movement of a finger.
4.1. Parameters for FKP recognition algorithms

This subsection describes the parameters for FKP recognition algorithms (A), (B) and (C) used in the experiments.
For the algorithm (A), we employ parameters for BLPOC as K1/M1 = 0.25 and K2/M2 = 0.2 which are optimized for PolyU

FKP database in Ref. [17]. The algorithm (A) does not consider the large translational displacement between ROI images.
Hence, we empirically determine that the threshold for the area ratio is 0.5.

In the algorithm (B), we employ the phase-based correspondence matching to obtain the corresponding point pairs and
the local block matching using BLPOC to calculate the matching score. For the correspondence matching, we have to deter-
mine the parameters such as the number of layers lmax and the size of local block image Wc. The number of layers lmax is
determined from the size of ROI images (220 � 110 pixels). In the experiments, we employ lmax = 2. The size of local block
image Wc is optimized using all the genuine pairs (165 subjects � 4 classes � 6 images from 1st session � 6 images from 2nd
session = 23,760 pairs) so as to maximize the 100th-lowest matching score. In the experiments, we employ Wc = 48. For the
matching score calculation, we have to determine the size of local block image W and the parameters of BLPOC K1/M1 and
K2/M2. In the experiments, we employ parameters as W = 32 and K1/M1 = K2/M2 = 0.5 which are the same in Ref. [34].

In the algorithm (C), we employ the phase-based correspondence matching for global and local registration. For the global
registration, we have to determine the parameters such as the number of layers lmax, the size of local block image Wc and the
threshold of local block similarity th. We employ lmax = 2 which can be determined from the size of ROI images. The size of
local block images Wc and the threshold of local block similarity th are optimized using all the genuine pairs so as to max-
imize the 100th-lowest matching score as well as the algorithm (B). In the experiments, we employ Wc = 48 and th = 0.29. For
the local registration and the matching score calculation, we have to determine the parameters such as the size of local block
image W and the parameters for BLPOC K1/M1 and K2/M2. In the experiments, we employ the same parameters for the algo-
rithm (B) such as W = 32 and K1/M1 = K2/M2 = 0.5. Note that the parameters for the proposed algorithm (C) is not so sensitive.
For example, the recognition performance of the proposed algorithm (C) is comparable even for th = 0.25–0.33 and W = 32,
48.
4.2. Performance evaluation using single FKP image

The performance of the biometrics-based verification system is evaluated by the Receiver Operating Characteristic (ROC)
curve, which illustrates the False Reject Rate (FRR) against the False Accept Rate (FAR) at different thresholds on the match-
ing score. We first evaluate the FRR for all the possible combinations of genuine attempts; the number of attempts is 23,760.
Next, we evaluate the FAR for all the possible combinations of imposter attempts; the number of attempts is 15,657,840. The
performance is also evaluated by the Equal Error Rate (EER), which is defined as the error rate where the FRR and the FAR are
equal.

Fig. 5 shows the ROC curves and EERs for each algorithm, and Fig. 6 shows the matching score distributions of genuine
and imposter pairs for each algorithm. The EER of the algorithms (B) and (C) is significantly low compared with that of the
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Fig. 5. ROC curves and EERs of the algorithms (A), (B) and (C).
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Fig. 6. Matching score distribution for algorithms (A), (B) and (C): (a) distribution of genuine pairs and (b) distribution of imposter pairs.

Table 2
EERs and d0 of the FKP recognition algorithms.

Algorithm EER [%] d0

OE-SIFT [16] 0.850 –
CompCode [17] 1.658 4.2989
ImCompCode & MagCode [17] 1.475 4.3224
BLPOC [17] 1.676 2.4745
LGIC [17] 0.402 4.5356
LGIC2 [18] 0.358 4.7001

(A) BLPOC 6.352 2.4529
(B) Correspondence matching 0.547 4.3905
(C) Proposed 0.321 6.9424
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algorithm (A), since the algorithm (A) does not consider the deformation of FKP images. Comparing the algorithm (B) and (C),
the matching score distribution of genuine pairs for the algorithm (C) is higher than that for the algorithm (B), and also the
matching score distribution of imposter pairs for the algorithm (C) is lower than that for the algorithm (B). This fact indicates
that the algorithm (C) is suitable for recognizing FKP images compared with the algorithm (B), since the algorithm (C) con-
siders both global and local deformation of FKP images to calculate the matching scores between the FKP images.

Table 2 shows the EERs [%] and d0 values of FKP recognition algorithms: OE-SIFT [16], CompCode [10], ImCompCode &
MagCode [14], BLPOC [11], LGIC [17], LGIC2 [18] and the proposed algorithm. d0 is the index of how well the genuine and
the imposter distributions are separated and is given by
d0 ¼
ffiffiffi
2
p
jlgenuine � limposterjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

genuine þ r2
imposter

q ; ð15Þ
where lgenuine and limposter are the mean value of genuine and imposter matching scores, respectively, and rgenuine and
rimposter are the standard deviation of genuine and imposter matching scores, respectively. Note that EERs and d0 for the con-
ventional algorithms are referred from cited papers in Table 2, where the experimental conditions such as the number of
genuine and imposter pairs are the same in all the algorithms. The EER of BLPOC is different between Ref. [11] and this paper,
since the software implementations are different from each other. From Table 2, the proposed algorithm exhibits signifi-
cantly good recognition performance compared with the state-of-the-art conventional FKP recognition algorithms.

Table 3 shows the computation time of each FKP recognition algorithm, where the evaluation environment for each algo-
rithm is shown in Table 4. The computation time of the proposed algorithm is about 0.2 s. with MATLAB implementation, and



Table 3
Computation time of the FKP recognition algorithms.

Algorithm Time

OE-SIFT [16] <1 s
CompCode [17] 60.3 ms
ImCompCode & MagCode [14] 106.6 ms
BLPOC [17] 2.1 ms
LGIC [17] 63.8 ms
LGIC2 [18] 408 ms

(A) BLPOC 5.9 ms
(B) Correspondence matching 200.8 ms
(C) Proposed 204.4 ms

Table 4
Evaluation environment for computation time of FKP recognition algorithms.

Ref. [16] Refs. [14,17,18] Ours

CPU Intel Intel Intel
Pentium Dual-Core Core 2 Duo E6550 Xeon X5690
(1.66 GHz) (2.33 GHz) (3.46 GHz)

Implementation — Visual C#.Net 2005 MATLAB 7.14.0

Table 5
EERs and d0 for each finger and multiple fingers, where ( ) indicates the EER and d0 of the left index FKP images without one image pair shown in Fig. 7.

Finger EER [%] d0

Left index 0.683 6.5112
(0.232) (6.9399)

Left middle 0.347 7.1631
Right index 0.082 6.8428
Right middle 0.175 5.9515

Index and middle 0.0078 8.6736
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thus the computation time can be reduced by translating the MATLAB code to other implementation-oriented languages such
as C/C++.
4.3. Performance evaluation using multiple FKP images

In the practical situation, the system can allow input of multiple FKP images such as index and middle fingers to recognize
a person. It could result in improving the performance of the FKP recognition system.

First, we evaluate the performance for each finger. In this case, the number of genuine pairs is 5940 and the number of
imposter pairs is 974,160 for each finger. Table 5 shows EERs and d0 for each finger. Note that, in the left index FKP images,
the matching score of one subject is significantly low, since there is a large movement of a finger between first and second
sessions and also the images taken in the first session have a scab, while the images taken in the second session do not have
it as shown in Fig. 7. Hence, we evaluate the performance of the left index FKP images without one subject shown in Fig. 7,
and indicate the result values with the parenthesis in Table 5. From the experimental results, the EERs of right fingers are
lower than those of the left fingers, while d0 of all the fingers is almost the same.
Fig. 7. A pair of left index FKP images which matching score is significantly low: (a) the image taken in the first session (/098_left index/01ROI.jpg) and (b)
the image taken in the second session (/098_left index/07ROI.jpg).
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To evaluate the performance of the use of multiple FKP images in the PolyU FKP database, we consider the situation that a
person inputs the FKP images taken from the index and middle fingers of a hand, where we assume that the left and right
hands are taken from different persons. In other words, we evaluate the performance using FKP images taken from the index
and middle fingers of 330 subjects. In this case, the number of genuine pairs is 11,880 and the number of imposter pairs is
3,908,520. The matching score S for multiple FKP images is defined by
S ¼ Sindex þ Smiddle

2
; ð16Þ
where Sindex and Smiddle indicate the matching score for index and middle fingers, respectively. Fig. 8 shows the ROC curve for
the use of multiple fingers, and the bottom row in Table 5 shows the EER and d0. As a result, the EER for the use of multiple
fingers is significantly low compared with that for the use of a single finger. Thus, we can enhance the recognition perfor-
mance of the FKP recognition algorithm by using multiple fingers.

5. Conclusion

This paper has proposed an FKP recognition algorithm using BLPOC-based local block matching. The proposed algorithm
employs the global and local registration of FKP images to obtain the reliable matching score. The experiments using the
PolyU FKP database demonstrate that the proposed algorithm exhibits higher recognition performance than the state-of-
the-art conventional algorithms. In addition, we demonstrate that the use of multiple fingers makes it possible to signifi-
cantly improve the performance of the FKP recognition algorithm. In the future, we will develop the practical FKP recognition
system with multiple finger acquisition.
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