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Abstract: Recently, model-based studies of morpho-
genesis employing computer simulations have begun to
attract much attention in mathematical biology. Mor-
phogenesis can be described and modeled mathemati-
cally by reaction-diffusion system. We proposed a Digi-
tal Reaction-Diffusion System (DRDS) — a model of a
discrete-time discrete-space reaction-diffusion system for
nonlinear signal processing tasks. Example applications
include enhancement and restoration of fingerprint im-
ages as well as generation of biological textures for com-
puter graphics applications. In this paper, we present
the design of a special DRDS that emulates characteris-
tic behavior of excitable dynamics, and demonstrate its
application to a shortest path search problem.

1. Introduction

Living organisms can create a remarkable variety of
structures to realize their intelligent functions. In em-
bryology, the development of patterns and forms is some-
times called Morphogenesis. In 1952, Alan Turing sug-
gested that a system of chemical substances, called mor-
phogens, reacting together and diffusing through a tissue,
is adequate to account for the main phenomena of mor-
phogenesis [1]. Recently, model-based studies of mor-
phogenesis employing computer simulations have begun
to attract much attention in mathematical biology [2],
[3].

From an engineering viewpoint, the insights into mor-
phogenesis provide important concepts for devising a
new class of intelligent signal processing functions in-
spired by biological pattern formation phenomena [4], [5].
From this viewpoint, we have proposed a framework of
Digital Reaction-Diffusion System (DRDS) – a discrete-
time discrete-space reaction-diffusion dynamical system
– for designing signal processing models exhibiting active
pattern/texture formation capability, and applied DRDS
to the biological texture generation and to the fingerprint
image enhancement/restoration [6], [7].

The DRDS can simulate various reaction-diffusion
dynamics by changing the nonlinear reaction function
and its parameters. In this paper, we newly design a
FitzHugh-Nagumo-type excitable DRDS, which can cre-
ate excitable traveling waves having the following fea-

tures: (i) the waves propagate with constant velocities,
and (ii) they vanish in collisions with the other waves.
We also propose an algorithm of shortest path search
in two-dimensional space using the excitable DRDS. We
first define a map on the two-dimensional DRDS, and ini-
tiate a traveling wave at the starting point in the map.
The traveling waves propagate through the map and gen-
erate the equidistant surfaces. By using the equidistant
surfaces, we can search the shortest path from the start-
ing point to any specified point in the map. On the basis
of this idea, this paper presents a DRDS-based shortest
path search algorithm, which is useful for solving navi-
gation tasks in arbitrary two-dimensional maps with ob-
stacles.

2. Excitable Digital Reaction-Diffusion
System

A Digital Reaction-Diffusion System (DRDS) – a mod-
el of a discrete-time discrete-space reaction-diffusion dy-
namical system – can be naturally derived from the origi-
nal reaction-diffusion system defined in continuous space
and time (see [6] for detailed mathematical formulation).
The general M -morphogen DRDS can be obtained as

x(n0+1, n1, n2)
= x(n0, n1, n2)+R(x(n0, n1, n2))

+D(l ∗ x)(n0, n1, n2), (1)

where

x = [x1, x2, · · · , xM ]T ,

xi : concentration of the i-th morphogen,

R = T0R̃ = [R1(x), R2(x), · · · , RM (x)]T ,

Ri(x) : reaction kinetics for the i-th morphogen,

D = diag[D1, D2, · · · , DM ],
diag : diagonal matrix,

Di : diffusion coefficient of the i-th morphogen,

l(n1, n2)=




1
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0 otherwise,
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Figure 1. Wave propagation in two-dimensional excitable DRDS: (a) initial condition, (b)–(e) wave propagation.

and ∗ is the spatial convolution operator defined as

(l ∗ x)(n0, n1, n2)

=




(l ∗ x1)(n0, n1, n2)
(l ∗ x2)(n0, n1, n2)

...
(l ∗ xM )(n0, n1, n2)




=




1∑
p1=−1

1∑
p2=−1

l(p1, p2)x1(n0, n1 − p1, n2 − p2)

1∑
p1=−1

1∑
p2=−1

l(p1, p2)x2(n0, n1 − p1, n2 − p2)

...
1∑

p1=−1

1∑
p2=−1

l(p1, p2)xM (n0, n1 − p1, n2 − p2)




.

DRDS can simulate various reaction-diffusion dynam-
ics by changing the nonlinear reaction kinetics and its
parameters. In this paper, we use the FitzHugh-Nagumo
(FHN) model, which is one of the most widely studied
excitable models [2]. The two-morphogen FHN-based
DRDS called the excitable DRDS is defined as follows:[

x1(n0+1, n1, n2)
x2(n0+1, n1, n2)

]
=

[
x1(n0, n1, n2)
x2(n0, n1, n2)

]

+
[

R1(x1(n0, n1, n2), x2(n0, n1, n2))
R2(x1(n0, n1, n2), x2(n0, n1, n2))

]

+
[

D1(l ∗ x1)(n0, n1, n2)
D2(l ∗ x2)(n0, n1, n2)

]
, (2)

where

R1(x1, x2) = T0

[
1
k1

{x1(x1−k2)(1−x1)−x2}
]

,

R2(x1, x2) = T0 (x1 − k3x2) .

In this paper, we employ the parameter set: k1 = 10−3,
k2 = 10−6, k3 = 0.1，D1 = 40, D2 = 0, T0 = 10−3, and
T1 = T2 = 1.

The excitable DRDS exhibits the excitable behavior
and generates traveling waves depending on the initial
condition. Assume that the initial condition is given
by x1(0, n1, n2) = x2(0, n1, n2) = 0 except for the s-
tarting point (nS

1 , nS
2 ). When we give a certain amoun-

t of stimulus above the threshold (∼ 0.9 assuming the

above parameter set) at the starting point, for example,
x1(0, n1, n2) = 0.9, a traveling wave is initiated from the
starting point and propagates with a constant velocity
as the time step n0 increases.

Figure 1 shows the wave propagation in the two-
dimensional excitable DRDS. In this example, we first
give initial stimuli as x1(0, 64, 32) = x1(0, 64, 96) = 0.9,
where 0 ≤ n1, n2 ≤ 127 (Fig. 1 (a)). The traveling waves
spread in a circular pattern and vanish in collisions with
the other wave as show in Figs. 1(b)–(e). In this ex-
ample, we can observe two important characteristics of
excitable waves: (i) propagating with constant veloci-
ties and (ii) vanishing in collisions with boundaries and
other waves. These features suggest a unique algorithm
for the shortest path search problem as described in [8],
where snapshots of propagating waves are considered as
equidistant surface from the starting point and used for
finding the shortest path from the starting point to any
specified point in two-dimensional space.

3. Shortest Path Search Algorithm

The original idea of the shortest path search using ac-
tual chemical waves could be found in the reference pa-
per [8], where the optimal pathways were determined by
the collection of time-lapse position information on actu-
al chemical waves propagating through two-dimensional
mazes prepared with the Belousov-Zhabotinsky (BZ) re-
action. Inspired by the natural computing using chemi-
cal wave propagation, we propose a shortest path search
algorithm using the excitable DRDS. The proposed algo-
rithm employs the excitable DRDS for wavefront gener-
ation and performs the traceback of traveling wavefronts
to find the shortest paths.

Figures 2 (a)–(c) show a wave propagation in two-
dimensional DRDS with the size of 128 × 128. In Fig.
2 (d), 26 snapshots of wavefronts at 100-step time inter-
vals are superimposed to form a composite image. Each
wavefront represents a set of equidistant locations from
the starting point at each time step, and hence we can
derive the shortest path by tracing back the history of
wavefront position from the goal to the starting point.

The proposed algorithm consists of two operations:
Forward Operation and Backward Operation. The For-
ward Operation is to generate a traveling wave in the ex-
citable DRDS and record snapshots of equidistant wave
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Figure 2. Wave propagation in two-dimensional DRDS with obstacles: (a)–(c) wave propagation, (d) superposition
of traveling waves taken every 100-step.

procedure Forward Operation
Input

a map (obstacle information), a starting point (nS
1 , nS

2 ), a goal (nG
1 , nG

2 );
Output

W (n0): a list of points (n1, n2) in two-dimensional space at which the value of x1(n0, n1, n2) is higher than a specific
threshold value Thr (that is, W (n0) stores the list of coordinates at which the traveling wave exists),

nG
0 : the time step when the traveling wave arrives at the goal (nG

1 , nG
2 );

begin
Set a high concentration (that is higher than the threshold Thr) to x1(0, nS

1 , nS
2 );

Set 0 to x1(0, n1, n2) for the coordinates (n1, n2) �= (nS
1 , nS

2 )
Set 0 to x2(0, n1, n2) for all the coordinates (n1, n2);
Store (nS

1 , nS
2 ) in W (0);

n0 := 0; { Initialize the time step }
while the traveling wave does not arrive at (nG

1 , nG
2 ) do

begin
Compute the excitable DRDS (2) for one step assuming the boundary condition defined by the map, and derive
x1(n0 + 1, n1, n2) and x2(n0 + 1, n1, n2);
Store the coordinates (n1, n2) of the wavefronts into W (n0+1) (i.e., the coordinates (n1, n2) at which the value
x1(n0+1, n1, n2) is higher than Thr);
n0 := n0 + 1

end;
nG

0 := n0

end.

Figure 3. Algorithm for Forward Operation.

patterns at specific time intervals. Backward Operation,
on the other hand, is to trace back the wavefronts from
the goal to starting point to find the optimal pathways.
Figure 3 and 4 show the algorithms for the Forward and
Backward Operations, respectively. The proposed algo-
rithm organizes the Forward and Backward Operations
so that they require only four inputs: a map, a starting
point (nS

1 , nS
2 ), a goal (nG

1 , nG
2 ) and a time step resolution

∆ for traceback.
Figure 5 shows typical examples of shortest path

search in complicated mazes, where multiple goals are
specified in advance. We can observe that all the ob-
tained paths avoid obstacles and are the shortest paths,
in terms of Euclidean distance, for the given goals.

4. Conclusion

This paper presents a shortest path search algorithm
in a two-dimensional space using the excitable Digital
Reaction-Diffusion System (DRDS). The traveling wave
generated by the excitable DRDS has two significant fea-

tures: (i) propagation with constant velocities and (ii)
annihilation in collisions with other waves. These fea-
tures are effectively used to find the shortest paths in
mazes with various obstacles. The proposed algorithm
could be applied to various navigation tasks defined in
two-dimensional space, and could also be extended to
shortest path search algorithms for higher-dimensional
space.
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procedure Backward Operation
Input

(nS
1 , nS

2 ), (nG
1 , nG

2 ), W (n0), nG
0 ,

∆: a resolution of the time step interval for traceback operation;
Output

Path: a list of points on the shortest path from (nS
1 , nS

2 ) to (nG
1 , nG

2 );

begin
Set (nG

1 , nG
2 ) to Path and a search list;

n0 := nG
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Get a search point (nb
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Figure 4. Algorithm for Backward Operation.
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Figure 5. Shortest path search on 512× 512 space with convex (a) and non-convex (b) obstacles.
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