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ABSTRACT

High-accuracy image registration is an important fundamental task
in many fields, such as image sensing, image/video processing, com-
puter vision, etc. In order to evaluate accuracy of image registration
algorithms, the reference images transformed with known param-
eters have to be used. Reference images taken by a camera may
include human errors, while reference images generated by a com-
puter may require pixel interpolation in the process. To address these
problems, this paper proposes a performance evaluation method us-
ing the Mandelbrot set which is one of the famous fractals. Experi-
mental evaluation shows effectiveness of the proposed method.

Index Terms— image registration, image matching, perfor-
mance evaluation, Mandelbrot set, phase-only correlation

1. INTRODUCTION

High-accuracy image registration is an important fundamental task
in many fields, such as image sensing, image/video processing, com-
puter vision, etc [1]. In particular, image registration techniques
with sub-pixel accuracy have been receiving much attention. Im-
age registration algorithms are broadly classified into 2 categories:
feature-based and area-based algorithms. The feature-based algo-
rithms employ feature points on images to align images, e.g., SIFT
(Scale Invariant Feature Transform) [2]. On the other hand, the area-
based algorithms employ similarity (or dissimilarity) measures be-
tween images, e.g., SAD (Sum of Absolute Differences), SSD (Sum
of Squared Differences) [3, 4], and Phase-Only Correlation (POC)
[5, 6, 7].

In order to evaluate accuracy of image registration algorithms,
the reference images transformed with known parameters have to
be used. For example, to obtain reference images with sub-pixel
translations, we apply a lowpass filter to a high-resolution image
and downsample shifted versions of the image. Using appropriate
downsampling rates, we can generate images having sub-pixel trans-
lations. However, pixel interpolation is required to generate images
with rotation and scale. We can also obtain translated, rotated and
scaled images, where an object is mounted on a micro stage which
allows precise alignment of the object position and is taken by a cam-
era. In this case, we need a precise micro stage and carefully operate
the camera and stage to reduce the error associated with human and
device.

In this paper, we propose a performance evaluation method us-
ing the Mandelbrot set [8] for image registration algorithms. Figure
1 shows an example of the Mandelbrot set. The Mandelbrot set is a
set of points in the complex plan having elaborate boundaries, where

Fig. 1. Mandelbrot set.

the little copies of the Mandelbrot set are connected to the main body
of the set and are all slightly different. Considering the Mandelbrot
set as two-dimensional (2D) signals defined in continuous space, we
can generate images transformed with arbitrary parameters without
interpolating pixels, since the Mandelbrot set has infinite resolution.
We also demonstrate effectiveness of the proposed method through
experiments for evaluating performance of registration algorithms.

2. MANDELBROT IMAGE GENERATION

This section describes a Mandelbrot image generation procedure.
The Mandelbrot set defined as the set of complex values of x1 + jx2

is obtained from the following quadratic recurrence equation,

zn+1 = z2
n + x1 + jx2, (1)

where x1 and x2 are real-number coordinates, and the initial condi-
tion is z0 = 0. In nature, the Mandelbrot set is the set of all points in
the complex plain x1 + jx2 which does not diverge under n → ∞.
In order to reduce the computational cost, we calculate Eq. (1) up to
n = U , where U = 1, 000 in this paper. If |zn| ≥ 2 (n ≤ U), the
intensity value hc(x1, x2) for (x1, x2) in the complex plain is n. If
|zn| ≤ 2 until n = U , the intensity value hc(x1, x2) is U . Thus,
we can obtain the Mandelbrot set as hc(x1, x2). Note that we em-
ploy h′

c(x1, x2) = log{hc(x1, x2) + 1} instead of hc(x1, x2) for
intensity compression.

The Mandelbrot set h′
c(x1, x2) can be considered as a 2D image

defined in continuous space. We now sample a continuous Man-
delbrot set h′

c(x1, x2) at the sampling intervals T1 and T2 to have
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Fig. 2. Examples of Mandelbrot images

a Mandelbrot image h(n1, n2). Let (c1, c2) be image centers and
(n1, n2) be discrete space indices, we have

h(n1, n2) = h′
c(x1 − c1, x2 − c2)|x1=n1T1,x2=n2T2 , (2)

where n1 = −M1, · · · , M1 and n2 = −M2, · · · , M2. Figure 2
shows examples of Mandelbrot images generated by changing image
centers (c1, c2) and a scale factor. In these figures, we employ

A: D = 1.0 × 10−11,
c1 = −0.25272149866535,
c2 = 0.84996890117939,

B: D = 1.0 × 10−7,
c1 = −0.64868627955000,
c2 = 0.48617790435000,

C: D = 5.0 × 10−6,
c1 = 0.28950114650000,
c2 = 0.01346307350000,

where T1 = T2 = D × 10l (l = 0, 1, 2) andM1 = M2 = 200. We
can obtain various versions of Mandelbrot images by changing the
viewpoint of the Mandelbrot set as shown in Fig. 2.

In the following, we describe how to obtain the Mandelbrot im-
ages transformed with arbitrary parameters. Consider fc(x1, x2) as
a 2D Mandelbrot set in continuous space with real-number indices
x1 and x2. Let gc(x1, x2) be the Mandelbrot set obtained by trans-
lating, rotating and scaling fc(x1, x2) by the translations (δ1, δ2),
the angle θ and the scaling factor s, respectively. Assume that
f(n1, n2) and g(n1, n2) are spatially sampled images of fc(x1, x2)
and gc(x1, x2) as

f(n1, n2) = fc(x1, x2)|x1=n1T1,x2=n2T2

g(n1, n2) = gc(x1, x2)|x1=n1T1,x2=n2T2

= fc(s(x1 − δ1) cos θ − s(x2 − δ2) sin θ,

s(x1 − δ1) sin θ + s(x2 − δ2)

× cos θ)|x1=n1T1,x2=n2T2 . (3)

m = 1 m = 2 m = 3
(a) (b) (c)

Fig. 3. Examples of Mandelbrot images reducing the effect of alias-
ing: (a)m = 1 (original), (b)m = 2 and (c)m = 3.

Note that we consider here the similarity transformation for sim-
plicity. We can also employ nonlinear transformation to generate
the Mandelbrot images. The generated Mandelbrot images contain
aliasing, which prevents accurate performance evaluation of image
registration algorithms. To reduce the effect of aliasing, we apply a
lowpass filter to a high-resolution image havingm-times higher res-
olution. Figure 3 shows examples of Mandelbrot images with and
without anti-aliasing.

3. EXPERIMENTS AND DISCUSSION

This section presents experiments for evaluating performance of im-
age registration algorithms using Mandelbrot images.

3.1. Image Registration Algorithms

In the experiments, we employ two image registration algorithms.
Algorithm (A) is an image registration algorithm using Phase-Only
Correlation (POC) proposed by [6], which can estimate translation,
rotation and scale. Algorithm (B) is the extended version of Algo-
rithm (A) which estimates transformation parameters iteratively. In
general, there is a non-overlapped area between two images with
image transformation. The non-overlapped area becomes the uncor-
related noise components in the POC function and then reduce the
estimation accuracy of Algorithm (A). Addressing this problem, we
detect the common areas between two images and estimate trans-
formation parameters between detected common areas using POC.
Repeating the above procedure, we can improve estimation accu-
racy even if images are translated, rotated and scaled. In this paper,
the number of iteration is 3.

3.2. Experiments and Discussion

We carry out two experiments in this paper; one is to evaluate the
effect of aliasing and the other is to evaluate performance of image
registration algorithms using translated, rotated and scaled images.

In the first experiment, we generate the Mandelbrot images,
where m is changed from 1 to 3. So, the maximum image reso-
lution considered in this experiment is 3-times higher than that of
original Mandelbrot images. In order to compare the images used in
[6], we generate the Mandelbrot images under the same condition
summarized as follows,
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Fig. 4. Examples of Mandelbrot images (m = 3): (a) translation,
(b) rotation and (c) scale.

• Translation: Images translated horizontally from 0 to 5 pixels
with a spacing 0.1 pixels, where the total number of images
is 51.

• Rotation: Images rotated from 0◦ to 90◦ with a rotation spac-
ing 1◦, where the total number of images is 91.

• Scale: Images scaled to 500/(500 + 5i) (i = 0, · · · , 11),
where the total number of images is 12. In [6], the wood cube
mounted on the z-stage is taken by a camera while moving the
stage 12 times with each micro step 5mm, where the initial
distance from the camera to the cube is about 50cm.

We employ the parameters for Mandelbrot image generation as fol-
lows: T1 = T2 = 10−11, c1 = −0.25272149866535, c2 =
0.84996890117939 and the image size is 401 × 401 pixels (M =
200). Figure 4 shows examples of Mandelbrot images (m = 3). The
estimation accuracy is evaluated by errors between the estimate and
true values. The RMS (Root Mean Square) error calculated from all
the errors is also employed to evaluate performance of the registra-
tion algorithms.

Figure 5 shows the estimation errors for translation, rotation and
scale, respectively, and Table 1 shows the RMS errors. As a result,
the errors for the Mandelbrot images with m = 1 are larger than
those of other images, since the Mandelbrot images with m = 1
contain aliasing. The errors for the Mandelbrot images withm = 3
are comparable with that of the wood cube. As is observed in this
experiment, we need to generate the anti-aliased Mandelbrot images
from the Mandelbrot images having 3-times higher resolution for
accurate performance evaluation of image registration algorithms.

In the second experiment, we generate 3 types of the Mandel-
brot images, where we employ the parameter set used in Fig. 2.
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Fig. 5. Estimation errors: (a) translation, (b) rotation and (c) scale.

Each Mandelbrot image is transformed according to the parameter
set described in the upper rows of Table 2. Note that (δ1, δ2) indi-
cate translational displacements, θ indicates a rotation angle and s
indicates a scaling factor. Figure 6 shows the Mandelbrot images
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Fig. 6. Translated, rotated and scaled Mandelbrot images

Table 1. RMS errors
m = 1 m = 2 m = 3 Wood cube

Translation (A) 0.0196 0.0152 0.0065 0.0042
[pixel] (B) 0.0191 0.0148 0.0061 0.0068
Rotation (A) 0.0618 0.0204 0.0204 0.0455
[degree] (B) 0.0650 0.0299 0.0299 0.0586
Scale (A) 0.1060 0.0643 0.0526 0.0547
[%] (B) 0.0880 0.0319 0.0254 0.0375

used in this experiment. The image registration algorithm used in
this experiment is Algorithm (B). The middle and lower rows of Ta-
ble 2 show the estimate values obtained from Algorithm (B) and the
errors between true and estimate values, respectively. As a result, the
estimate values include only a small error. Thus, we can accurately
generate the Mandelbrot images transformed with the arbitrary pa-
rameters from theMandelbrot set. TheMandelbrot images are useful
for evaluating performance of the image registration algorithms.

4. CONCLUSION

This paper has proposed a performance evaluation method using the
Mandelbrot set which is one of the famous fractals. Experimen-
tal evaluation using the Mandelbrot images shows effectiveness of
the proposed method. In future, we will consider a universal per-
formance evaluation method using the Mandelbrot images or other
fractal images for image registration algorithms.
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