
GPU IMPLEMENTATION OF PHASE-BASED STEREO CORRESPONDENCE
AND ITS APPLICATION

Mamoru Miura∗, Kinya Fudano†, Koichi Ito∗§, Takafumi Aoki∗§,
Hiroyuki Takizawa∗§ and Hiroaki Kobayashi‡§

∗Graduate School of Information Sciences, Tohoku University, Japan.
E-mail: miura@aoki.ecei.tohoku.ac.jp
†NEC Software Tohoku, Ltd., Japan.

‡Cyberscience Center, Tohoku University, Japan.
§Japan Science and Technology Agency, CREST.

ABSTRACT
This paper proposes a Graphics Processing Unit (GPU) implemen-
tation of the stereo correspondence matching using Phase-Only
Correlation (POC). The use of high-accuracy stereo correspondence
matching based on POC makes it possible to measure accurate
3D shape of the object using stereo vision, while the drawback of
POC-based approach is its high computational cost. Addressing this
problem, we propose a GPU implementation of POC-based corre-
spondence matching. Through a set of experiments using a variety
of GPUs, we demonstrate that the proposed implementation is high-
speed and high-efficiency compared with the CPU implementation.
We also apply the proposed approach to a real-time 3D measurement
system.

Index Terms— stereo vision, stereo correspondence, phase-
only correlation, GPU, real-time 3D measurement

1. INTRODUCTION

Image correspondence is one of the important key techniques in the
field of computer vision [1]. Especially, the 3D measurement using
stereo vision requires an accurate stereo correspondence algorithm,
since the accuracy of 3D measurement depends on that of image
correspondence between a stereo image pair. The speed of image
correspondence is also important in practical applications of the 3D
measurement using stereo vision.

To achieve high-accuracy 3D measurement, we have proposed a
high-accuracy stereo correspondence matching method using Phase-
Only Correlation (POC) and have developed a passive 3D measure-
ment system using stereo vision whose accuracy is comparable with
the active 3D measurement system [2]. On the other hand, the high
computational cost of the POC-based correspondence matching lim-
its the area of applications, since the computation of POC is based
on Fourier transform. Also, in practice, we need to find a lot of cor-
responding points to measure a high-quality 3D shape.

Addressing this problem, we use a Graphics Processing Unit
(GPU) implementation for accurate and fast stereo correspondence
matching. The GPU has been very efficient at manipulating and dis-
playing computer graphics. Recently, the highly parallel structure
of GPU makes it more effective than general-purpose CPUs for al-
gorithms where processing of large blocks of data can be done in
parallel. This effort is known as General-Purpose computation on
Graphics Processing Unit (GPGPU) [3]. The GPGPU has been ap-
plied to scientific computing and video processing [4]. In this paper,

we propose a GPU implementation of the phase-based stereo corre-
spondence matching, since the correspondence can be obtained for
each reference point and the most of operations such as Fourier trans-
form can be done in parallel. Through experiments using a variety
of GPUs, we demonstrate that the proposed approach is high-speed
and high-efficiency compared with the CPU implementation. We
also apply the proposed approach to a real-time 3D measurement
system.

2. PHASE-BASED CORRESPONDENCE MATCHING

We briefly introduce a Phase-Only Correlation (POC) function
(which is sometimes called the “phase-correlation function”) [5, 6].
Let f(n) and g(n) be the 1D image signals, where −M ≤ n ≤ M
and the signal length is N = 2M + 1. Then, the normalized
cross-power spectrum R(k) is defined as

R(k) =
F (k)G(k)

|F (k)G(k)| = ej(θF (k)−θG(k)), (1)

where F (k) and G(k) are the 1D DFTs of f(n) and g(n), G(k) de-
notes the complex conjugate of G(k), and −M ≤ k ≤ M . The 1D
POC function r(n) between f(n) and g(n) is given as the 1D In-
verse DFT (1D IDFT) of R(k). When two images are similar, their
POC function gives a distinct sharp peak. When two images are not
similar, the peak drops significantly. The height of the peak gives a
good similarity measure for image matching, and the location of the
peak shows the translational displacement between the images. We
have also proposed the important techniques for improving the accu-
racy of 1D image matching for sub-pixel correspondence matching:
(i) function fitting for high-accuracy estimation of peak position, (ii)
windowing to reduce boundary effects, (iii) spectral weighting for
reducing aliasing and noise effects and (iv) averaging 1D POC func-
tions to improve peak-to-noise ratio [2].

In the case of a rectified stereo image pair, the disparity can be
limited to horizontal direction [1]. The use of 1D POC makes it pos-
sible to achieve high-accuracy correspondence matching with low
computational cost. In order to find the accurate correspondence
from a stereo image pair, we employ the sub-pixel correspondence
matching using POC, which employs a coarse-to-fine strategy using
image pyramids for robust correspondence search (Fig. 1) [2]. Let
p be a coordinate vector of a reference pixel in the reference image
I(n1, n2). The problem of sub-pixel correspondence search is to

1697978-1-4673-2533-2/12/$26.00 ©2012 IEEE ICIP 2012

POC matching

POC matching

Layer 0
(original image)

Layer 1

Layer 2

Layer lmax = 3
(coarsest image) Search window

Image I Image J

Reference point p Corresponding point q

POC matching

p
2

q
2

q
lmax

p
lmax

p
1

q
1

Fig. 1. Framework for high-accuracy correspondence matching.

find a real-number coordinate vector q in the input image J(n1, n2)
that corresponds to the reference pixel p in I(n1, n2). We briefly
explain the procedure as follows.
Step 1: For l = 1, 2, · · · , lmax − 1, create the l-th layer images
Il(n1, n2) and Jl(n1, n2), i.e., coarser versions of I0(n1, n2) and
J0(n1, n2), recursively as follows:

Il(n1, n2) =
1

4

1∑

i1=0

1∑

i2=0

Il−1(2n1 + i1, 2n2 + i2),

Jl(n1, n2) =
1

4

1∑

i1=0

1∑

i2=0

Jl−1(2n1 + i1, 2n2 + i2).

Step 2: For every layer l = 1, 2, · · · , lmax, calculate the coordi-
nate pl = (pl1, pl2) corresponding to the original reference point p0

recursively as follows:

pl = � 1
2
pl−1� = (� 1

2
pl−1 1�, � 12pl−1 2�), (2)

where �z� denotes the operation to round the element of z to the
nearest integer towards minus infinity.
Step 3: We assume that qlmax

= plmax
in the coarsest layer. Let

l = lmax − 1.
Step 4: From the l-th layer images Il(n1, n2) and Jl(n1, n2), ex-
tract two sub-images (or search windows) fl(n1, n2) and gl(n1, n2)
with their centers on pl and 2ql+1, respectively. The image blocks
consist of L lines of N -point 1D signal.
Step 5: Estimate the displacement between fl(n1, n2) and gl(n1, n2)
with pixel accuracy using POC-based image matching. Let the esti-
mated displacement vector be δl. The l-th layer correspondence ql

is determined as follows:

ql = 2ql+1 + δl. (3)

Step 6: Decrement the counter by 1 as l = l − 1 and repeat from
Step 4 to Step 6 while l ≥ 0.
Step 7: From the original images I0(n1, n2) and J0(n1, n2), extract
two image blocks with their centers on p0 and q0, respectively. Esti-
mate the displacement between the two blocks with sub-pixel accu-
racy using POC-based image matching. Let the estimated displace-
ment vector with sub-pixel accuracy be denoted by δ = (δ1, δ2).

NDRange

Work-itemWork-group

Fig. 2. Data parallel programming model in OpenCL [7].

Update the corresponding point as

q = q0 + δ. (4)

3. GPU IMPLEMENTATION

3.1. GPU Programming Model in OpenCL

In this paper, we employ the GPU implementation based on OpenCL
[7] to perform unified performance evaluation of the proposed ap-
proach on GPUs developed by NVIDIA and AMD. OpenCL is a
framework supporting parallel programming in heterogeneous com-
putational environments such as multi-core CPUs and GPUs. It pro-
vides efficient parallel computing using both task-based and data-
based parallelism.

Fig. 2 shows a data parallel programming model in OpenCL.
The execution model in OpenCL consists of two concepts: a com-
pute kernel and a program. A compute kernel is a basic execution
unit in OpenCL. A program is a collection of compute kernels and
internal functions. The program invokes a kernel over an index space
called an N-Dimensional Range (NDRange). A single kernel in-
stance at a point in the index space is called a work-item. Work-items
are also grouped into work-groups as shown in Fig. 2. The data-
parallel execution is achieved by executing multiple work-groups in
parallel.

Fig. 3 shows a memory model in OpenCL. OpenCL handles
four memory spaces such as private, local, constant and global. The
global memory permits access to all work-items in all work-groups
and has a large amount of capacity with long latency. The local
memory is shared by all the work-items in each work-group. The pri-
vate memory can only be used by a work-item. The constant mem-
ory may be used by all the work-groups to store read-only data. The
local and private memories can be accessed faster than the global
memory, since the substance of the local and private memories is lo-
cated on each core. Note that the capacity of the local and private
memories is small. In the case that the amount of local memory per
work-group or private memory per work-item is increased, it results
in reducing the number of parallel execution of work-items for each
core.

3.2. Implementation Techniques

We present the GPU implementation techniques for the phase-based
stereo correspondence algorithm described in Sect. 2.

1698

Compute device

Global/Constant memory

Work-group

Local memory

Work-item

Private
memory

Work-item

Private
memory

Work-group

Local memory

Work-item

Private
memory

Work-item

Private
memory

Fig. 3. Memory model in OpenCL [7].

According to the features of OpenCL in Sect. 3.1, the following
5 techniques are used.

(T1) Parallel execution for each reference point and pixel
The stereo correspondence matching is to find a corresponding

point on the input image that corresponds to the reference pixel in
the reference image. The correspondence matching for each refer-
ence point is done in parallel, since this process is independent for
each reference point. So, we assign one work-group to the corre-
spondence matching for one reference point. In the process for each
reference point, we extract the local block around the reference point
and the search window in the input image, and perform the local
block matching using POC. The above process is independent for
each pixel in the search window. So, we assign one work-item to the
process for one pixel in the search window.

(T2) Integration of kernels for POC computation
In general, it is important for the GPU implementation to make

as smaller kernels as possible in order to improve the performance
of GPU computing with reducing the resources of work-groups and
work-items. According to the above knowledge, the computation
of POC can be separated into 4 kernels: (i) extracting a search win-
dow, (ii) computing FFT, (iii) computing the normalized cross-power
spectrum and (iv) computing IFFT. However, in this case, the per-
formance is degraded, since the data for the POC computation are
transferred using the global memory whose latency is long. Address-
ing this problem, we integrate 4 kernels (i)–(iv) into one kernel and
transfer the data for the POC computation using the local memory
whose latency is shorter than the global memory.

(T3) Look-up table for twiddle factors
In GPUs, the computational cost of transcendental functions

such as sin and cos is higher than that of floating-point operations
such as addition and multiplication. Also, depending on the vari-
ables for the transcendental function, the global memory may be
used as a buffer to compute the transcendental function. In the
computation of DFT, if the length of signals is known, the twiddle
factors can be fixed in advance. When invoking a kernel, twiddle
factors are calculated only once, are stored into the local memory,
and are referred from the local memory.

(T4) Loop unrolling
In the kernels for stereo correspondence, the process for each

line and FFT are implemented by using “for” loops. In GPU, the
process with conditional branching such as “if” and “for” is serial-
ized for each branch. In order to avoid such a serialization, we em-
ploy the loop unrolling for the “for” loops with the constant number
of loops.

(T5) Size of work-group
In T1, the parallel processing is performed using N × L work-

items per one work-group for the search window with N ×L pixels.
Depending on the size of the search windows, a large nubmer of re-

Table 1. Processing time [ms] for each implementation.

Radeon Radeon GeForce GeForce
HD 5870 HD 6970 GTX 480 GTX 580

I1 59.9 58.3 100.2 86.2
I2 41.7 37.9 71.2 60.4
I3 34.1 34.5 39.6 33.6
I4 33.6 31.2 39.5 33.4
I5 32.7 30.2 27.5 23.6

sources for each work-group may be consumed and then the number
of active work-groups in each core may be reduced. Addressing this
problem, we use N ×L′ work-items per one work-group and repeat
� L
L′ � times. Note that we have to empirically determine the optimal

L′, since the optimal L′ depends on the GPU architectures and the
size of search windows.

4. EXPERIMENTS AND DISCUSSION

We implement the POC-based stereo correspondence matching on
GPUs using the implementation techniques as mentioned in Sect. 3.
In the experiments, we use NVIDIA GeForce GTX 480, GeForce
GTX 580, AMD Radeon HD 5870 and Radeon HD 6970.

4.1. Performance evaluation of GPU implementations

Table 1 shows the processing time for each implementation, where
I1, I2, I3, I4 and I5 in the first column indicate the GPU implementa-
tion using only T1, T1–T2, T1–T3, T1–T4 and T1–T5, respectively.
The parameters for the POC-based stereo matching are as follows:
The size of the search window is 32 pixels × 15 lines, the number
of layers is 4 and the number of reference points is 10,000. As a
result, the use of the implementation techniques makes it possible to
achieve a 1.9–3.6 times speed-up as compared with the simple GPU
implementation.

4.2. Performance evaluation of CPU and GPU implementations

We implement the POC-based stereo correspondence matching on
CPUs and GPUs and evaluate the computation time and the power-
delay product. The CPU used in the experiments is Intel Core i7-
975 (3.3 GHz). We use a single thread (1 core) of the CPU and 8
threads (4 cores) of the CPU. The most time-consuming process for
the CPU implementations is FFT. So, we use FFTW [8], which is
known as the fastest FFT library for the CPU implementation. The
parameters for the stereo correspondence matching is the same in
Sect. 4.1. To evaluate the performance, we use 1,000, 5,000 and
10,000 reference points. We measure the power consumption of
the whole system during execution with the power meter (HIOKI
AC/DC POWER HiTESTER 3334). The power-delay product is the
product of the processing time and the power consumption during
processing, which measures the energy.

Table 2 shows the processing time and the power-delay prod-
uct for each implementation. The GPU implementations are 16–23
times faster than the CPU implementation with a single thread and
also 4–5 times faster than the CPU implementation with 8 threads
(4 cores). The power-delay product of the GPU implementations is
smaller than that of the CPU implementations. The above results
indicate that the GPU implementations of the POC-based stereo cor-

1699

Table 2. Experimental results (upper: processing time [ms], lower:
power-delay products [W×s]).

of CPU CPU HD HD GTX GTX
points 1 thr. 8 thr. 5870 6970 480 580

1,000
59.1 18.4 10.4 8.7 5.7 5.1
10.9 4.2 2.9 2.8 2.2 2.0

5,000
278.1 74.6 18.8 17.7 15.4 13.3
51.2 16.9 5.4 5.6 5.8 5.3

10,000
548.8 126.8 32.7 30.2 27.5 23.6
101.0 28.7 9.3 9.6 10.4 9.3

respondence matching are faster and more efficient than the CPU
implementations.

5. APPLICATION TO REAL-TIME 3D MEASUREMENT

In this paper, we develop a real-time 3D face measurement system
as one of the applications of the proposed approach.

As shown in Fig. 4, the developed system consists of a stereo
camera pair and a computer. The flow diagram of the developed
system is shown in Fig. 5. The step of “Face detection” is to ex-
tract the face region from the captured image. In the system, we
employ the face detection method using the Haar-like features and
AdaBoost provided by OpenCV [9]. The step of “Placement of ref-
erence points” is to set the reference points on the extracted face
region in a reticular pattern with a spacing of 5 pixels. The camera
parameters for the stereo rectification and the 3D reconstruction are
obtained by the camera calibration in advance.

Fig. 6 shows examples of 3D measurement results. As a result,
the accurate 3D shape of the face is measured. Also, the system
can measure the 3D face in real-time even if the facial expression is
changed. The system can measure 6,000–7,000 3D points in 15 fps
which is the frame rate of the camera. As is observed in the above
results, the GPU implementation of the POC-based stereo correspon-
dence matching makes it possible to achieve real-time accurate 3D
measurement even with the general-purpose computer.

6. CONCLUSION

This paper has proposed the GPU implementation of the POC-based
stereo correspondence matching. Using the optimal implementation
techniques for each GPU architecture, the GPU implementations are
16–23 times faster than the CPU implementation with a single thread
(1 core) and 4–5 times faster than the CPU implementation with 8
threads (4 cores). We have also developed the real-time 3D face
measurement system and demonstrated its effectiveness.

7. REFERENCES

[1] R. Szeliski, Computer Vision: Algorithms and Applications,
Springer-Verlag New York Inc., 2010.

[2] T. Shibahara, T. Aoki, H. Nakajima, and K. Kobayashi, “A sub-
pixel stereo correspondence technique based on 1D phase-only
correlation,” Proc. Int’l Conf. Image Processing, pp. V–221–V–
224, 2007.

[3] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A.E. Lefohn, and T.J. Purcell, “A survey of general-purpose

Stereo camera

Measurement result

Object
Stereo camera:
 Point Grey Research Inc.,
 FL2G-13S2C-C, color (Left camera),
 FL2G-13S2M-C, monochrome (Right camera),
Image size:
 1280×960 pixels
Lens:
 μTRON, FV1022, 10 mm focal length
Stereo baseline:
 40 mm
CPU:
 Intel Core i7-940XM (2.13GHz), 4 GB RAM
GPU:
 NVIDIA GeForce GTX 480M

Fig. 4. Real-time 3D face measurement system.

Stereo camera CPU GPU

Face detection

Display

Placement of

reference points
Stereo

correspondence

Stereo rectification

3D reconstruction

Capture

Face region

Stereo images

Rectified

images

3D points

Corresponding

points

Reference points

Fig. 5. Processing flow of real-time 3D face measurement system.

(a) (b) (c)

Fig. 6. 3D face measurement: (a) left camera image, (b) right camera
image and (c) measurement result.

computation on graphics hardware,” Computer Graphics Fo-
rum, vol. 26, no. 1, pp. 80–113, 2007.

[4] “GPGPU.org,” http://gpgpu.org.

[5] C. D. Kuglin and D. C. Hines, “The phase correlation image
alignment method,” Proc. Int’l Conf. Cybernetics and Society,
pp. 163–165, 1975.

[6] K. Takita, T. Aoki, Y. Sasaki, T. Higuchi, and K. Kobayashi,
“High-accuracy subpixel image registration based on phase-
only correlation,” IEICE Trans. Fundamentals, vol. E86-A, no.
8, pp. 1925–1934, Aug. 2003.

[7] Khronos Group Std., “The OpenCL Specification, Ver-
sion 1.2,” http://www.khronos.org/registry/cl/
specs/opencl-1.2.pdf.

[8] M. Frigo and S.G. Johnson, “The design and implementation of
FFTW3,” Proc. the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[9] “Open Computer Vision Library,” http://sourceforge.
net/projects/opencvlibrary/.

1700

