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A High-Accuracy Passive 3D Measurement System Using
Phase-Based Image Matching

Mohammad Abdul MUQUIT†a), Takuma SHIBAHARA†, Nonmembers, and Takafumi AOKI†, Member

SUMMARY This paper presents a high-accuracy 3D (three-dimen-
sional) measurement system using multi-camera passive stereo vision to
reconstruct 3D surfaces of free form objects. The proposed system is
based on an efficient stereo correspondence technique, which consists of
(i) coarse-to-fine correspondence search, and (ii) outlier detection and cor-
rection, both employing phase-based image matching. The proposed sub-
pixel correspondence search technique contributes to dense reconstruction
of arbitrary-shaped 3D surfaces with high accuracy. The outlier detection
and correction technique contributes to high reliability of reconstructed 3D
points. Through a set of experiments, we show that the proposed system
measures 3D surfaces of objects with sub-mm accuracy. Also, we demon-
strate high-quality dense 3D reconstruction of a human face as a typical
example of free form objects. The result suggests a potential possibility of
our approach to be used in many computer vision applications.
key words: 3D measurement, stereo vision, phase-based image matching,
phase-only correlation, outlier detection

1. Introduction

Recently the demand of high-accuracy 3D measurement is
rapidly growing in a variety of computer vision applications,
for instance, robot vision, human-computer interface, bio-
metric authentication, etc. Existing 3D measurement tech-
niques are classified into two major types—active and pas-
sive. In general, active measurement employs structure il-
lumination (structure projection, phase shift, moire topog-
raphy, etc.) or laser scanning, which is not necessarily de-
sirable in many applications. On the other hand, passive
3D measurement techniques based on stereo vision have the
advantages of simplicity and applicability, since such tech-
niques require simple instrumentation. (See [1] for a good
survey on this topic.) However, poor reconstruction quality
still remains as a major issue for passive 3D measurement,
due to the difficulty in finding accurate correspondence be-
tween stereo images; this problem is generally known as
“correspondence problem” [2]. As a result, application of
passive stereo vision to high-accuracy 3D measurement sys-
tem for capturing 3D surfaces of free form objects is still
weakly reported in the published literature. The objective of
this paper is to implement a passive 3D measurement sys-
tem, whose reconstruction accuracy is comparable with that
of practical active 3D scanners based on structured light pro-
jection.

Manuscript received June 28, 2005.
Manuscript revised October 5, 2005.
Final manuscript received November 21, 2005.
†The authors are with Graduate School of Information Sci-

ences, Tohoku University, Sendai-shi, 980-8579 Japan.
a) E-mail: mukit@aoki.ecei.tohoku.ac.jp

DOI: 10.1093/ietfec/e89–a.3.686

The overall accuracy of passive 3D measurement is
mainly determined by (i) the baseline length between two
cameras and (ii) the accuracy of estimated disparity be-
tween corresponding points [2]. Conventional approaches
to passive 3D measurement employ wide-baseline camera
pairs combined with feature-based correspondence match-
ing [1]. However, in such approaches only a limited num-
ber of corresponding points can be used for 3D reconstruc-
tion. On the other hand, area-based correspondence match-
ing (which must be combined with narrow-baseline stereo
cameras to avoid projective distortion between stereo im-
ages) makes possible to increase the number of correspond-
ing points. However, the accuracy of 3D measurement be-
comes severely restricted when the baseline is narrow [3].
In this paper, therefore, we focus on the techniques for
high-accuracy stereo correspondence in order to overcome
the limitation of measurement accuracy in narrow-baseline
stereo vision.

The key idea in this paper is to employ phase-based
image matching for high-accuracy stereo correspondence.
Our experimental observation shows that the methods us-
ing phase-based image matching exhibit better registration
performance than the methods using SAD (Sum of Abso-
lute Differences) in general [4], [5]. In our previous work,
we presented an application of phase-based image matching
to a generic correspondence search problem [6], where a
coarse-to-fine strategy combined with a sub-pixel window
alignment technique is used to determine correspondence
between two images with sub-pixel resolution.

The goal of this paper is to implement the phase-based
correspondence search technique in a practical 3D measure-
ment system, and to analyze its impact on the system’s
performance (i.e., reconstruction accuracy and reliability).
We demonstrate that the use of phase-based correspondence
search makes possible to achieve fully automatic high-
accuracy 3D measurement with a narrow-baseline stereo
vision system. Another contribution of this paper is a
highly reliable technique for detecting and correcting out-
liers (wrong or unreliable corresponding points), which are
generally caused by occlusion, image noise, photometric
distortion, etc. [1], [7]. The proposed technique is based
on Phase-Only Correlation (POC) function—a correlation
function used in the phase-based image matching to evalu-
ate similarity between two images. We found that the peak
value of the POC function can be used as an efficient mea-
sure of reliability for stereo correspondence. We can easily
detect outliers in corresponding points by finding the points
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for which correlation peak value is less than a certain thresh-
old. By correcting correspondence for the detected outliers,
we can achieve high-quality dense reconstruction of 3D ob-
jects. Through a set of experiments, we show that the pro-
posed system measures 3D surfaces of regular shaped ob-
jects (a solid plane and a solid sphere) with sub-mm ac-
curacy. Also, we demonstrate high-quality dense 3D re-
construction of a human face as a typical example of free
form objects, which suggests a potential possibility of our
approach to be used in many computer vision applications.

2. High-Accuracy Stereo Correspondence Using
Phase-Based Image Matching

In Sects. 2.1 and 2.2, we describe the high-accuracy im-
age matching based on Phase-Only Correlation (POC) func-
tion†, and its application to stereo correspondence problem.
(See our papers [5], [6] for earlier discussions on the pro-
posed techniques.) Section 2.3 describes the outlier detec-
tion and correction technique using the POC function.

2.1 Phase-Based Image Matching

Consider two N1×N2 images, f (n1, n2) and g(n1, n2), where
we assume that the index ranges are n1 = −M1, · · · ,M1 and
n2 = −M2, · · · ,M2 for mathematical simplicity, and hence
N1 = 2M1 + 1 and N2 = 2M2 + 1. The 2D Discrete Fourier
Transforms (2D DFTs) of the two images are given by

F(k1, k2) =
∑
n1n2

f (n1, n2)Wk1n1
N1

Wk2n2
N2

= AF(k1, k2)e jθF (k1,k2), (1)

G(k1, k2) =
∑
n1n2

g(n1, n2)Wk1n1
N1

Wk2n2
N2

= AG(k1, k2)e jθG(k1,k2), (2)

where k1 = −M1, · · · ,M1, k2 = −M2, · · · ,M2, WN1 =

e− j 2π
N1 , WN2 = e− j 2π

N2 , and the operator
∑

n1n2
denotes∑M1

n1=−M1

∑M2
n2=−M2

. AF(k1, k2) and AG(k1, k2) are amplitude
components, and e jθF (k1,k2) and e jθG(k1,k2) are phase compo-
nents.

The cross-phase spectrum (or normalized cross spec-
trum) R̂(k1, k2) is defined as

R̂(k1, k2) =
F(k1, k2)G(k1, k2)

|F(k1, k2)G(k1, k2)| = e jθ(k1,k2), (3)

where G(k1, k2) denotes the complex conjugate of G(k1, k2)
and θ(k1, k2) = θF(k1, k2) − θG(k1, k2). The POC function
r̂(n1, n2) between f (n1, n2) and g(n1, n2) is the 2D Inverse
DFT (2D IDFT) of R̂(k1, k2) and is given by

r̂(n1, n2) =
1

N1N2

∑
k1k2

R̂(k1, k2)W−k1n1
N1

W−k2n2
N2
, (4)

where
∑

k1k2
denotes

∑M1

k1=−M1

∑M2

k2=−M2
. When two images

are similar, their POC function gives a distinct sharp peak.

(When f (n1, n2) = g(n1, n2), the POC function r̂(n1, n2) be-
comes the Kronecker delta function.) When two images are
not similar, the peak drops significantly. The height of the
peak can be used as a good similarity measure for image
matching, and the location of the peak shows the transla-
tional displacement between the two images.

In the following, we derive the analytical peak model
for the POC function between the same images that are
minutely displaced with each other. Now consider fc(x1, x2)
as a 2D image defined in continuous space with real-number
indices x1 and x2. Let δ1 and δ2 represent sub-pixel displace-
ments of fc(x1, x2) to x1 and x2 directions, respectively. So,
the displaced image can be represented as fc(x1−δ1, x2−δ2).
Assume that f (n1, n2) and g(n1, n2) are spatially sampled im-
ages of fc(x1, x2) and fc(x1 − δ1, x2 − δ2), and are defined as

f (n1, n2) = fc(x1, x2)|x1=n1T1,x2=n2T2
, (5)

g(n1, n2) = fc(x1 − δ1, x2 − δ2)|x1=n1T1,x2=n2T2
, (6)

where T1 and T2 are the spatial sampling intervals, and
index ranges are given by n1 = −M1, · · · ,M1 and n2 =

−M2, · · · ,M2. For simplicity, we assume T1 = T2 = 1.
The cross-phase spectrum R̂(k1, k2) and the POC function
r̂(n1, n2) between f (n1, n2) and g(n1, n2) will be given by

R̂(k1, k2) � e j 2π
N1

k1δ1 e j 2π
N2

k2δ2 , (7)

r̂(n1, n2) � α

N1N2

sin{π(n1 + δ1)}
sin{ πN1

(n1 + δ1)}
sin{π(n2 + δ2)}

sin{ πN2
(n2 + δ2)} , (8)

where α = 1. The above Eq. (8) represents the shape of the
peak for the POC function between the same images that
are minutely displaced with each other. This equation gives
a distinct sharp peak. (When δ1 = δ2 = 0, the POC function
becomes the Kronecker delta function.) The peak position
(δ1, δ2) of the POC function corresponds to the displacement
between the two images. We can prove that the peak value α
decreases (without changing the function shape itself), when
small noise components are added to the original images.
Hence, we assume α � 1 in practice. For image matching
task, we estimate the similarity between two images by the
peak value α, and estimate the image displacement by the
peak position (δ1, δ2).

Listed below are important techniques for high-
accuracy sub-pixel image matching.
(i) Function fitting for high-accuracy estimation of peak
position
We use Eq. (8)—the closed-form peak model of the POC
function—directly for estimating the peak position by func-
tion fitting. By calculating the POC function, we can obtain
a data array of r̂(n1, n2) for each discrete index (n1, n2). It
is possible to find the location of the peak that may exist
between image pixels by fitting the function Eq. (8) to the
calculated data array around the correlation peak, where α,
δ1, and δ2 are fitting parameters.
(ii) Windowing to reduce boundary effects

†The POC function is sometimes called the “phase correlation
function.”
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Due to the DFT’s periodicity, an image can be considered
to “wrap around” at an edge, and therefore discontinuities,
which are not supposed to exist in real world, occur at every
border in 2D DFT computation. We reduce the effect of dis-
continuity at image border by applying 2D window function
to the input images. For this purpose, we use 2D Hanning
window defined by

w(n1, n2) =

1 + cos

(
πn1

M1

)

2

1 +

(
πn2

M2

)

2
. (9)

(iii) Spectral weighting technique to reduce aliasing and
noise effects
For natural images, typically the high frequency compo-
nents may have less reliability (low S/N ratio) compared
with the low frequency components. We could improve
the estimation accuracy by applying a low-pass-type weight-
ing function H(k1, k2) to R̂(k1, k2) in frequency domain and
eliminating the high frequency components having low re-
liability. The useful weighting function is the DFT of 2D
Gaussian function defined as

H(k1, k2) � e−2π2σ2(k2
1+k2

2), (10)

where σ is a parameter that controls the pass-band width.
When calculating the POC function, R̂(k1, k2) is multiplied
by the weighting function H(k1, k2) in frequency domain.
Then, Eq. (8) is modified as

r̂(n1, n2) =
1

N1N2

∑
k1k2

R̂(k1, k2)H(k1, k2)W−k1n1
N1

W−k2n2
N2

� α

2πσ2
e−{(n1+δ1)2+(n2+δ2)2}/2σ2

, (11)

where α, δ1 and δ2 are fitting parameters for evaluating the
correlation peak. That is, Eq. (11) should be employed for
function fitting instead of Eq. (8) when using the spectral
weighting technique.

All the above techniques for high-accuracy sub-pixel
image matching are adopted in stereo correspondence
search in our system. We use POC-based block matching
of size 33× 33 pixels, for which we can achieve about 0.05-
pixel accuracy in displacement estimation.

2.2 Sub-Pixel Correspondence Search

This section discusses a high-accuracy stereo correspon-
dence algorithm based on the sub-pixel image matching
mentioned above. The algorithm described here is an im-
proved version of the method reported in our previous paper
[6]. The improved points are listed below:
• Optimizing the shape of spectral weighting function:
We apply low-pass type spectral weighting function (Sec-
tion 2.1(iii)) for better displacement estimation accuracy. In
our previous paper [6], we used simple rectangular type
weighting function. However, our experimental observa-
tion using the system proposed in this paper shows that

Gaussian spectral weighting function provides better perfor-
mance for measuring natural objects. Therefore, we imple-
ment a Gaussian version of the spectral weighting function
given in Eq. (10).
• Peak model of the POC function: The peak model of
the POC function used in the paper [6] was 2D periodic
sinc function. Due to the modification in spectral weighting
function (Eq. (10)) in this paper, we use the modified peak
model of the POC function (the 2D IDFT of the Gaussian
spectral weighting function), which is given by Eq. (11).
Obviously, the modified peak model becomes the Gaussian
function again and can be easily fitted to the discrete data ar-
ray of the POC function by nonlinear least-square method.
In our experiment, we use Levenberg-Marquardt algorithm
for the least-square fitting. We empirically found that this
peak model of the POC function ensures better correspon-
dence accuracy with simple non-linear function fitting com-
pared to that used in paper [6].
• Sub-pixel window alignment by image shifting: In our
previous paper [6], the sub-pixel window alignment was
done by shifting the center of the window function within
a rectangular image block. In this paper, on the other hand,
we shift the image to be extracted into the rectangular block
with sub-pixel resolution, while keeping the center of the
window function unchanged. We found the latter method
provides better accuracy in sub-pixel correspondence esti-
mation. This sub-pixel image shifting is done by rotating the
phase component of the image block in frequency domain.
In the previous version of window alignment, 5 iterations
were needed. On the other hand, we found that 3 iterations
are enough for the image shifting technique to be converged,
which saves calculation time.
• Procedure of sub-pixel window alignment: In our previ-
ous paper [6], sub-pixel window alignment is done regard-
ing both left and right images. In this paper, this alignment
is done only regarding the right image. Thus the reference
point in the left image remains unchanged in pixel level
posiiton, and its corresponding point in the right image is
estimated with sub-pixel accuracy. This reduces the compu-
tational complexity of correspondence search.

Our algorithm employs (i) a coarse-to-fine strategy us-
ing image pyramids for robust correspondence search with
POC-based block matching, and (ii) a sub-pixel window
alignment technique for finding a pair of corresponding
points with sub-pixel displacement accuracy. In the first
stage (i), we estimate the stereo correspondence with pixel-
level accuracy using hierarchical POC-based block match-
ing with coarse-to-fine strategy. Thus, the estimation er-
ror becomes less than 1 pixel for every corresponding point.
The second stage (ii) of the algorithm is to recursively im-
prove the sub-pixel accuracy of corresponding points by ad-
justing the location of the window function (Eq. (9)) with
sub-pixel accuracy. As a result, the coordinates of corre-
sponding points are obtained with sub-pixel accuracy.

Let m = (m1,m2)(∈ Z2) be a coordinate vector of a ref-
erence pixel in the left image I (i.e., the reference image),
where Z is the set of integers. The problem of sub-pixel
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Fig. 1 Sub-pixel correspondence search using a coarse-to-fine strategy
(e.g., lmax = 4).

correspondence search is to find a real-number coordinate
vector q(m) = (q1, q2)(∈ R2) in the right image J that corre-
sponds to the reference pixel m in I, where R is the set of real
numbers, representing the coordinates in J with sub-pixel
accuracy. For convenience, we use the symbol Cint

I (⊂ Z2) to
denote the set of all integer coordinate vectors (with pixel-
level accuracy) in the reference image I, and the symbol
Creal

J (⊂ R2) to denote the set of all real-number coordinate
vectors (with sub-pixel accuracy) in J. Then, the problem is
to find the set of corresponding points q(m) ∈ Creal

J for all
reference points m ∈ Cint

I . Figure 1 shows an overview of
the sub-pixel correspondence search algorithm. We give a
simple description of the technique here:

Procedure A: “Sub-pixel correspondence search”

Input:

• the left image I and the right image J
• the set of reference points m = (m1,m2) ∈ Cint

I

Output:

• the corresponding points q(m) ∈ Creal
J for all reference

points m = (m1,m2) ∈ Cint
I

Procedure steps:

[Creation of coarse-to-fine image pyramids]
Step 1: Let the images of layer 0 be given by I0 = I and
J0 = J. For l = 1, 2, · · · , lmax, create the l–th layer images
Il and Jl (i.e., coarser versions of I0 and J0) by reducing the
original images I0 and J0 with the scale factor 2−l.

For every reference point m = (m1,m2) ∈ Cint
I , do the

following [Pixel-level estimation] and [Sub-pixel estima-
tion].

[Pixel-level estimation]
Step 2: In the coarsest layer lmax, the location of the ref-
erence point m = (m1,m2) is mapped to the coordinates
(�2−lmax m1�, �2−lmax m2�). As an initial estimate of the corre-
sponding point at the layer lmax, we simply assume that

qlmax
= (�2−lmax m1�, �2−lmaxm2�). (12)

That is, we assume that the reference point and its corre-
sponding point have the same coordinates at the coarsest
image layer.
Let l = lmax − 1.
Step 3: In the l–th layer image Il, the reference point is
mapped to (�2−lm1�, �2−lm2�). In Jl, on the other hand, 2ql+1
gives an initial estimate for the corresponding point based
on the result of upper layer estimation ql+1. Therefore, from
Il and Jl, extract two image blocks (i.e., windowed sub-
images) with their centers on (�2−lm1�, �2−lm2�) and 2ql+1,
respectively. Estimate the displacement between the two
image blocks with pixel accuracy using POC-based image
matching, which is a simplified version of the matching al-
gorithm described in Sect. 2.1. Let the estimated displace-
ment vector be denoted by δl = (δl1, δl2). The l–th layer
correspondence ql is determined as follows:

ql = 2ql+1 + δl. (13)

Step 4: Decrement the counter by 1 as l = l − 1 and repeat
from Step 3 to Step 4 while l � 0.
Step 5: Let the pixel-level estimation of correspondence be
given by q(m) = q0.

[Sub-pixel estimation]
Step 6: From the original images I0 and J0, extract two
image blocks (i.e., windowed sub-images) with their cen-
ters on m and q(m), respectively. Estimate the displacement
between the two blocks with sub-pixel accuracy using the
POC-based image matching described in Sect. 2.1. Let the
estimated displacement vector with sub-pixel accuracy be
denoted by δ = (δ1, δ2).
Step 7: Update the corresponding point as

q(m) = q(m) + δ, (14)

and repeat Step 6 and Step 7 until |δ| converges to small
value. �

2.3 Outlier Detection and Correction

The sub-pixel correspondence search technique described in
Sect. 2.2 determines corresponding point for any given refer-
ence point. The robustness of correspondence search is one
of the most important characteristics of our phase-based ap-
proach, where a large number of corresponding points are
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automatically detected without extracting image features.
However, because of occlusion, image noise, projective dis-
tortion, etc., corresponding points for some reference points
may not be estimated correctly. For such reference points,
the proposed technique outputs wrong or unreliable corre-
sponding points (generally known as outliers), which de-
grade the accuracy of measurement.

We propose an outlier detection technique using the
peak value of the POC function as a measure of correspon-
dence reliability. When the peak value of the POC function
between the local image blocks, centered at the reference
point m and at the corresponding point q(m), is below a cer-
tain threshold, q(m) is regarded as an outlier. This technique
improves both reliability and accuracy of the overall 3D re-
construction.

We also implement an outlier correction technique in
our system. Since our approach can detect a large number of
high-accuracy reliable corresponding points (usually known
as inliers), it is reasonable to assume a basic neighborhood
constraint for natural object surfaces – neighboring points
on natural object surfaces generally have smooth change in
disparity [10]. Therefore, the true position of an outlier will
have similar disparity to those of its neighboring points. The
key idea is to assume a tentative disparity for an outlier; the
tentative disparity is calculated by taking median of dispar-
ities of neighboring points. This tentative disparity is up-
dated again with sub-pixel resolution by POC-based block
matching. Procedure of the outlier detection and correction
technique is given below:

Procedure B: “Outlier detection and correction”:

Input:

• the left image I and the right image J
• the corresponding points q(m) ∈ Creal

J for all reference
points m = (m1,m2) ∈ Cint

I

Output:

• the corrected disparity vectors dc(m) ∈ R2 for all ref-
erence points m = (m1,m2) ∈ Cint

I , where we set
dc(m) = (0, 0) for the outliers that cannot be corrected

• the corrected corresponding points qc(m) ∈ Creal
J for

the reference points m = (m1,m2) ∈ Cint
I that have non-

zero disparity dc(m) � (0, 0)

Procedure steps:

[Outlier detection]
For every reference point m = (m1,m2) ∈ Cint

I , do the fol-
lowing:
Step 1: Extract two image blocks from I and J such that the
blocks have their centers on m and q(m), respectively. Esti-
mate the peak value α of the POC function between the two
image blocks as described in Sect. 2.1. Compare α with αth

to verify reliability of the correspondence between m and
q(m), where αth is the threshold value. If α � αth, then con-
sider q(m) as an inlier, and set qc(m) and its disparity vector

dc(m) as

qc(m) = q(m), (15)

dc(m) = m− q(m). (16)

On the other hand, if α < αth, then consider q(m) as an
outlier, and give the outlier label as

dc(m) = (0, 0). (17)

(Here, we assume the use of parallel cameras in stereo vi-
sion, and hence a point with zero disparity has the physical
meaning of point at infinity.)

[Outlier correction]
For every reference point m = (m1,m2) ∈ Cint

I that has been
labeled as an outlier, i.e., dc(m) = (0, 0), do the following
Step 2 and Step 3:
Step 2: Consider 5 × 5 neighborhood points around m.
For these points, calculate median values of their horizon-
tal and vertical disparities, which are denoted by dmed

1 and
dmed

2 , respectively. Using the median disparities, we calcu-
late the tentative disparity vector d′(m) and the tentative cor-
responding point q′(m) as

d′(m) = (dmed
1 , d

med
2 ), (18)

q′(m) = m− d′(m). (19)

Step 3: Using q′(m) as an initial estimate of the corre-
spondence, perform [Sub-pixel estimation] in Procedure
A, and obtain an improved estimate for the corresponding
point q′(m) with sub-pixel resolution. Let α′ be the peak
value of the POC function for the improved correspondence.
If α′ � αth, then the result of sub-pixel estimation is consid-
ered to be reliable, and the corrected corresponding point
and disparity are set as

qc(m) = q′(m), (20)

dc(m) = m− q′(m). (21)

Otherwise, if α′ < αth, consider the correspondence q′(m) as
unreliable and the outlier label for dc(m) remains unchanged
as

dc(m) = (0, 0). (22)

For 3D reconstruction, we use only inlier correspondence
pairs (m, qc(m)) for which dc(m) � (0, 0). �

Applying the outlier detection/correction procedure,
we can obtain a set of high-accuracy corresponding points
for 3D reconstruction. Note here that in conventional stereo
vision systems, the use of epipolar constraint [8] is essential
in correspondence search as well as outlier detection. The
epipolar constraint is defined by the “fundamental matrix”
F, which is esimated by camera calibration in advance. In
our approach, on the other hand, correspondence search and
outlier detection are done using the POC function without
epipolar constraint, and hence we do not need to know the
fundamental matrix of stereo cameras in advance. On the
contratry, we can even use the high-accuracy corresponding
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points to estimate the fundamental matrix itself. This prop-
erty may be useful for such applications as 3D reconstruc-
tion from image sequences and other applications requiring
self-calibration. See Appendix for further discussion.

3. Multi-Camera 3D Measurement System

We implement a multi-camera passive 3D measurement sys-
tem based on the proposed correspondence search and out-
lier detection/correction techniques. In this section, the
multi-camera system is presented in details, where Sects. 3.1
and 3.2 describe the system architecture and the procedure
of 3D measurement, respectively.

3.1 System Architecture

Figure 2 shows the proposed multi-camera 3D measurement
system consisting of six calibrated cameras into three pairs
of camera heads (i.e., left, front and right camera heads).
Here, correspondence is taken only between every two cam-
eras of the same camera head, where the two cameras are
parallel to each other with a very narrow baseline (around
50 mm).

In general, the following two features must be consid-
ered in designing the optimal camera configuration for a 3D
measurement system for dense surface reconstruction:

• The narrow-baseline camera configuration makes pos-
sible to find stereo correspondence automatically for
every pixel, but a serious drawback is its low accu-
racy in the reconstructed 3D data when compared with
wide-baseline configuration.
• The wide-baseline camera configuration makes possi-

ble to achieve higher accuracy, but automatic stereo
correspondence is very difficult and is limited to a small
number of edge points. This may be unacceptable in
many practical applications of 3D measurement.

In our multi-camera system, we adopt narrow-baseline cam-
era alignment, where the problem of low accuracy in 3D
measurement is overcome by introducing the sub-pixel cor-
respondence search technique. The use of phase-based im-

Fig. 2 Multi-camera 3D measurement system.

age matching makes possible to achieve fully automatic
high-accuracy 3D measurement with a narrow-baseline
stereo vision system. This paper is the first demonstration
of a passive 3D measurement system, whose reconstruction
accuracy is comparable with that of practical active 3D scan-
ners based on structured light projection.

In our system, we use simple off-the-shelf CCD cam-
eras (JAI CVM10, 640× 480 pixels, monochrome, 256 grey
levels with a C-mount lens VCL-16WM), and a capture
board (Coreco Imaging Technology, IC-PCI with AM-STD-
RGB) for simultaneous imaging from the six cameras. Im-
ages are captured by the system in ambient light, and a vol-
ume of around 1500 (W)×1000 (H)×400 (D) mm3 is usually
adopted for measurement. Distance of target objects from
the cameras is set around 800–1200 mm, and the camera fo-
cus are adjusted to the distance.

3.2 3D Measurement Procedure and System Parameters

The measurement procedure is divided into four steps as fol-
lows:
• Camera calibration: Camera calibration is done in or-
der to determine the projective matrices, which consist
of the basic camera parameters, such as the relative rota-
tion/translation of cameras with respect to the world coordi-
nate, focal lengths, image centers, etc. Such parameters are
needed to calculate the 3D coordinates of a point [2], [8].
• Correspondence search: Correspondence search is done
using Procedure A. The technique makes possible to search
correspondence for any given reference point, and in our
system we usually determine correspondence for every 5th
point with respect to the horizontal and the vertical image
coordinates. For POC-based block matching, we set the pa-
rameters as: (i) the block size is N1 × N2 = 33 × 33 pixels
(weighted by 2D Hanning window), (ii) the spectral weight-
ing function is 2D Gaussian function with σ2 = 0.5, (iii)
number of fitting points for the sub-pixel displacement esti-
mation is 5 × 5, (iv) number of layers for the coarse-to-fine
search is 5.
• Outlier detection and correction: Outlier detection and
correction is done using Procedure B. The block size for
POC-based block matching is same as in the correspondence
search described above. The threshold αth for the peak value
of POC function is 0.3.
• 3D reconstruction: The projective matrices of the cam-
eras and the corresponding points are used to reconstruct
the real-world 3D coordinates, where 4000 to 5000 points
are reconstructed in our system.

In our system, we calibrate all the six cameras regard-
ing one unique predefined world coordinate system. There-
fore, the 3D points obtained by all the camera heads are re-
constructed on that same predefined world coordinate, al-
though the three camera heads (left, front and right) recon-
struct 3D points independently. As a result, no further oper-
ation is needed to combine the 3D points. Please note that,
the objective of using multiple cameras in our system is to
cover larger area of the object surface for 3D reconstruction.
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4. Experiments and Evaluations

In this section, we describe a set of experiments using
simple and well characterized physical surfaces to evalu-
ate the accuracy of the proposed 3D measurement system.
In addition, a human face—a typical example of free form
objects—is measured to demonstrate the system’s capability
of high-quality dense 3D reconstruction.

4.1 Impacts of Sub-Pixel Correspondence Search and Out-
lier Correction

We first evaluate the effects of the proposed techniques: the
sub-pixel correspondence search (Procedure A) and the out-
lier detection and correction (Procedure B), on the quality
of 3D measurement. For evaluation, we consider three dif-
ferent methods of 3D measurement:

• Method I employs a simplified version of Procedure
A (where we skip the steps of [Sub-pixel estimation]),
but does not employ Procedure B.
• Method II employs Procedure A, but does not employ

Procedure B.
• Method III employs both Procedure A and Procedure

B.

At first, we evaluate the accuracy of 3D reconstruc-
tion using two reference objects of geometrically regu-
lar shapes—a solid plane (a flat wooden board) of size
180× 150 mm2 and a solid sphere (a bowling ball) of radius
108.45 mm—both having sufficient machining accuracy. In
order to evaluate measurement accuracy for the solid plane,
we generate a best fitted plane for the measured points by the
least-squares algorithm. Let (xi, yi, zi) be the reconstructed
3D points, where i = 1, 2, · · · ,K. The plane fitting is to
minimize the following function:

P(a, b, c) =
K∑

i=1

(zi − axi − byi − c)2, (23)

where (a, b, c) are fitting parameters. Accuracy of measure-
ment is evaluated by the fitting error. Similar experiment is
carried out using the solid sphere as a reference object. For
sphere fitting, we minimize the following function:

S (c1, c2, c3, r)

=

K∑
i=1

(√
(xi − c1)2 + (yi − c2)2 + (zi − c3)2 − r

)2

, (24)

where (c1, c2, c3, r) are fitting parameters.
We use here only front camera pair for 3D measure-

ment, where the camera baseline is 50.84 mm (estimated by
the camera calibration) and the distance between the camera
pair and the reference objects is around 900 mm. Table 1
compares the errors in 3D measurement by the Method I, II
and III, when we use the solid plane as a reference object.
Table 2 summarizes the similar experiment, when we use

Table 1 Errors [mm] in 3D measurement of a plane object.

RMS error Maximum error

Method I 0.87 13.93
Method II 0.61 12.81
Method III 0.42 1.23

Table 2 Errors [mm] in 3D measurement of a sphere object.

RMS error Maximum error

Method I 1.59 20.19
Method II 0.63 18.52
Method III 0.55 4.12

the solid sphere as a reference object.
These results show that the proposed sub-pixel corre-

spondence technique contributes to reducing the RMS (Root
Mean Square) error significantly, and the outlier correction
technique is effective for reducing both the RMS error and
the maximum error. Figure 3 shows the 3D surfaces of
the plane object and the sphere object reconstructed by the
Methods I, II and III, respectively, which clearly visualizes
the significant impacts of the proposed technique. We can
observe that the Method I tends to produce stepwise error in
the 3D data, and even Method II produces scattered points
(i.e., outliers). The Method III, on the other hand, success-
fully reconstructs the smooth surfaces of the reference ob-
jects.

Table 3 summarizes the total number of reference
points for which correspondence search is carried out, the
number of detected outliers, the number of corrected out-
liers, and the resulting number of reconstructed 3D points.
For both plane and sphere objects, about 8–9% of the to-
tal reference points are classified into outliers, but around
80–90% of the outliers are corrected. Thus the outlier cor-
rection technique makes possible to increase the number of
reconstructed 3D points, and thus the technique may be use-
ful for many applications where dense reconstruction of 3D
surfaces is necessary.

4.2 Multi-Camera System Performance

In this section, we use the three camera heads (i.e., left,
front and right camera heads) simultaneously and evalu-
ate the overall accuracy of 3D measurement by changing
the position of the reference objects. At first, the object is
placed around 900 mm away from the cameras, and images
are captured by all the cameras. Then, a micro-stage (with
7 µm displacement error) is used to move the object 4 times,
where each time the displacement is 5 mm and images are
taken at each position. Thus, we have a set of reconstructed
object surfaces at 5 different positions. Let us denote the 5
different positions of the object by P1, P2, P3, P4 and P5
in order, where the distance of every movement: P1 → P2,
P2 → P3, P3 → P4 or P4 → P5 is 5 mm. Table 4 and Ta-
ble 5 summarize the RMS fitting errors of the reconstructed
object surfaces at the positions P1–P5, where RMS errors of
the 3D data from the three camera heads are given in dif-
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Fig. 3 Impacts of sub-pixel correspondence and outlier correction: (a) 2D images of a plane object,
(b) reconstructed plane using Method I, (c) reconstructed plane using Method II, (d) reconstructed plane
using Method III, (e)–(h) similar images for a sphere object; here, a portion of the reconstructed object
is presented for convenience in visualization.
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Table 3 Number of points in 3D reconstruction.

Plane Sphere

# of points in
3898 4928correspondence search

# of detected outliers 342 391
# of corrected outliers 309 312

# of reconstructed points 3865 4849

Table 4 RMS errors [mm] in 3D measurement of a plane object at dif-
ferent positions.

Position
Left Front Right

Combinedcamera camera camera

P1 0.35 0.42 0.35 0.40
P2 0.35 0.46 0.35 0.40
P3 0.38 0.43 0.36 0.40
P4 0.36 0.43 0.37 0.40
P5 0.38 0.41 0.36 0.39

Table 5 RMS errors [mm] in 3D measurement of a sphere object at dif-
ferent positions.

Position
Left Front Right

Combinedcamera camera camera

P1 0.64 0.55 0.58 0.65
P2 0.54 0.53 0.57 0.65
P3 0.54 0.60 0.54 0.65
P4 0.67 0.58 0.58 0.64
P5 0.70 0.47 0.56 0.70

Table 6 Errors [mm] in 3D movement estimation for a plane object.

Movement
Left Front Right

Combinedcamera camera camera

P1→ P2 0.06 0.06 0.00 0.05
P2→ P3 0.08 0.08 0.02 0.05
P3→ P4 0.03 0.09 0.01 0.03
P4→ P5 0.09 0.10 0.05 0.10

ferent columns as well as the overall RMS error when all
the 3D data are combined in a common world coordinate
system. The RMS error ranges from 0.35 mm to 0.46 mm
for the plane object, and 0.53 mm to 0.70 mm for the sphere
object, respectively.

We also evaluate accuracy of 3D movement estimation
by calculating the displacements of the reference object (the
plane or sphere) for the movements: P1 → P2, P2 → P3,
P3 → P4 and P4 → P5. We compare the estimated dis-
placement with the actual displacement of the object sur-
faces (5 mm each time with 7 µm displacement error of the
micro-stage). For the plane object, we calculate the distance
between every two adjacent fitted planes, and evaluate the
displacement error as shown in Table 6, where the error
ranges from 0.00 mm to 0.10 mm. For the sphere object,
we calculate the distance between the centers of every two
adjacent fitted spheres, and evaluate the displacement error
as shown in Table 7, where the error ranges from 0.01 mm
to 0.11 mm.

All these experiment results show that our proposed
system reconstructs 3D objects with around 0.5 mm error,

Table 7 Errors [mm] in 3D movement estimation for a sphere object.

Movement
Left Front Right

Combinedcamera camera camera

P1→ P2 0.10 0.04 0.01 0.10
P2→ P3 0.03 0.08 0.06 0.08
P3→ P4 0.07 0.03 0.09 0.01
P4→ P5 0.11 0.10 0.03 0.02

where the distance between the object and the cameras is
around 1 m. The accuracy is considered to be very high for
passive 3D measurement system without using structured
light projection or laser scanning.

Our case studies show that the measurement accuracy
of active 3D scanners ranges from 0.05 mm to 1 mm in gen-
eral. Typical examples of active scanners include Danae-
S (1 mm) of NEC, FastSCAN (0.5–0.75 mm) of Polhemus,
Aurora (1 mm) and Polaris (0.35 mm) of NDI, and VIVID
9i (0.05 mm) of Konica Minolta. The reason why the mea-
surement accuracy varies within such a wide range is that
systems using laser scanners (e.g., VIVID 9i) exhibit bet-
ter performance compared to systems using structured light
projection (e.g., Danae-S, Aurora, etc.). We conclude that
our system’s measurement accuracy (∼ 0.5 mm) is compa-
rable with that of active scanners using structured light pro-
jection.

4.3 3D Face Reconstruction

We demonstrate here the 3D measurement of a typical ex-
ample of free form objects—a human face. Figure 4 com-
pares the quality of 3D surfaces produced by the Methods
I, II and III, where the 3D data from left, front and right
camera heads are displayed independently. We can observe
significant impacts of the sub-pixel correspondence search
and outlier correction techniques on the quality of recon-
structed surfaces. We cannot evaluate the accuracy of 3D
reconstruction directly, since the precise dimensions of the
face are not known. Therefore, we verify the reliability of
the reconstruction by using epipolar constraint, where we
evaluate the distance of every corresponding point from its
epipolar line—the epipolar line is computed by using the
fundamental matrix obtained in camera calibration. In an
ideal situation, every corresponding point should be on its
epipolar line and the distance should be zero. Table 8 sum-
marizes the RMS errors in the evaluated distance for the two
reference objects and the human face. As for the Method III,
the RMS error is 0.16 pixels for the plane, 0.35 pixels for the
sphere and 0.27 pixels for the face. Thus, we can conclude
that the reconstructed 3D face has high accuracy comparable
with the reconstructed reference objects.

Finally, Fig. 5 displays the combined 3D data of the
human face from different view angles. To the best of the
authors’ knowledge, the quality of 3D reconstruction seems
to be one of the best that is available with passive 3D mea-
surement techniques reported to date. The result of this pa-
per clearly suggests a potential possibility of our proposed
approach to be widely used in many computer vision appli-
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Fig. 4 Impacts of sub-pixel correspondence search and outlier correction in 3D face reconstruction:
(a) 2D images from the left camera head, (b) reconstructed 3D data using Method I for the left camera
head, (c) reconstructed 3D data using Method II for the left camera head, (d) reconstructed 3D data
using Method III for the left camera head, (e)–(h) similar images for the front camera head, (i)–(l)
similar images for the right camera head.
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Table 8 RMS errors [pixel] in the distances between the corresponding
points and their epipolar lines.

Plane Sphere Face

Method I 0.33 0.65 0.79
Method II 0.25 0.64 0.48
Method III 0.16 0.35 0.27

Fig. 5 Reconstructed 3D face data from different view angles.

cations, e.g., face recognition, biometrics, human interface,
virtual reality, etc. In the conference paper [11], we pre-
sented an application of the proposed technique to 3D face
recognition for biometric authentication.

At this moment, all the computations are done using

MATLAB, where the reconstruction of 5000 points takes
around 60 seconds. The bottleneck of the computation is
the correspondence search process. However, the correspon-
dence search can be performed for each pixel independently
in our system, and thus, the computation time can be dras-
tically reduced by introducing parallel processing. The goal
of our current research project is to develop a real-time pas-
sive 3D capture system based on parallel DSP processors.

5. Conclusions

In this paper, we have proposed a high-accuracy multi-
camera passive 3D measurement system, which employs (i)
a phase-based sub-pixel correspondence search technique
and (ii) an outlier detection and correction technique. We
have successfully implemented a passive 3D measurement
system with reconstruction accuracy comparable to practi-
cal 3D scanners using structured light projection. Through
some experimental evaluations, we show that the system
achieves sub-mm (∼ 0.5 mm) accuracy in 3D measurement,
even with narrow baseline (∼ 50 mm) stereo camera heads.
In addition, we show that the system performs dense recon-
struction of free form objects with high quality, which re-
flects its potential possibilities in many computer vision ap-
plications. A main goal of our current research project is to
develop a real-time passive 3D capture system based on the
proposed approach.
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Appendix: Fundamental Matrix Estimation

The correspondence search technique introduced in this pa-
per estimates correspondence with sub-pixel accuracy. This
property can be utilized in estimating the fundamental ma-
trix with high accuracy [9], [12]. In this paper, we show a
simple comparison between the fundamental matrix Fp es-
timated from the corresponding points obtained by our pro-
posed approach, and the fundamental matrix Fc obtained
by the camera calibration parameters. For comparison, we
estimate the error by calculating the distances of the cor-
responding points from their epipolar lines defined by Fp

(or Fc). Figure A· 1(a) and (b) show the error regarding Fp

and Fc, respectively. We found that in both cases the RMS
error is in a similar level, i.e., 0.30 pixels for Fp and 0.27
pixels for Fc. The fundamental matrix Fp can be used for
self-calibration [12], which is utilized in applications like
3D reconstruction from image sequences [13]. In addition,
our method is applicable to high accuracy correspondence
matching in multi-baseline stereo systems [3], [12]. How-
ever, one drawback of this method is that it can be applied
only to narrow-baseline systems, and thus, the scope of its
application is limited.

Fig. A· 1 Comparison of the fundamental matrices Fc (a) and Fp (b) in
terms of epipolar-line errors.
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