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Abstract. This paper presents an efficient algorithm for iris recognition
using phase-based image matching. The use of phase components in two-
dimensional discrete Fourier transforms of iris images makes possible to
achieve highly robust iris recognition with a simple matching algorithm.
Experimental evaluation using the CASIA iris image database (ver. 1.0
and ver. 2.0) clearly demonstrates an efficient performance of the pro-
posed algorithm.

1 Introduction

Biometric authentication has been receiving extensive attention over the past
decade with increasing demands in automated personal identification. Among
many biometrics techniques, iris recognition is one of the most promising ap-
proaches due to its high reliability for personal identification [1-8].

A major approach for iris recognition today is to generate feature vectors
corresponding to individual iris images and to perform iris matching based on
some distance metrics [3-6]. Most of the commercial iris recognition systems
implement a famous algorithm using iriscodes proposed by Daugman [3]. One
of the difficult problems in feature-based iris recognition is that the matching
performance is significantly influenced by many parameters in feature extraction
process (eg., spatial position, orientation, center frequencies and size parameters
for 2D Gabor filter kernel), which may vary depending on environmental factors
of iris image acquisition. Given a set of test iris images, extensive parameter
optimization is required to achieve higher recognition rate.

Addressing the above problem, as one of the algorithms which compares iris
images directly without encoding [71[8], this paper presents an efficient algorithm
using phase-based image matching — an image matching technique using only
the phase components in 2D DFTs (Two-Dimensional Discrete Fourier Trans-
forms) of given images. The technique has been successfully applied to high-
accuracy image registration tasks for computer vision applications [9-11], where
estimation of sub-pixel image translation is a major concern. In our previous
work [12], on the other hand, we have proposed an efficient fingerprint recog-
nition algorithm using phase-based image matching, and have developed com-
mercial fingerprint verification units [I3]. In this paper, we demonstrate that the
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Fig. 1. Flow diagram of the proposed algorithm

same technique is also highly effective for iris recognition. The use of Fourier
phase information of iris images makes possible to achieve highly robust iris
recognition in a unified fashion with a simple matching algorithm. Experimental
performance evaluation using the CASIA iris image database ver. 1.0 and ver.
2.0 [I4] clearly demonstrates an efficient matching performance of the proposed
algorithm.

Figure [Il shows the overview of the proposed algorithm. The algorithm con-
sists of two stages: (i) preprocessing stage (step 1 — step 4) and (ii) matching
stage (step 5 — step 8). Section [2] describes the image preprocessing algorithm
(stage (i)). Section [Bl presents the iris matching algorithm (stage (ii)). Section [
discusses experimental evaluation.

2 Preprocessing

An iris image contains some irrelevant parts (eg., eyelid, sclera, pupil, etc.). Also,
even for the iris of the same eye, its size may vary depending on camera-to-eye
distance as well as light brightness. Therefore, before matching, the original
image needs to be preprocessed to localize and normalize the iris.

2.1 Iris Localization

This step is to detect the inner (iris/pupil) boundary and the outer (iris/sclera)
boundary in the original image for4(m1,m2) shown in Figure[2(a). Through a set
of experiments, we decided to use an ellipse as a model of the inner boundary. Let
(11,12) be the lengths of the two principal axes of the ellipse, (c1, ¢2) be its center,
and 6 be the rotation angle. We can find the optimal estimate (l1,l2,c1,c2,0)
for the inner boundary by maximizing the following absolute difference:

‘S(ll + All,lg -+ Alg,cl,CQ,e) — S(l1,12,01,02,9)| . (1)

Here, Al; and Aly are small constants, and S denotes the N-point contour
summation of pixel values along the ellipse and is defined as
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N-1
S, 12, c1,02,0) = Y forg(p1(n), pa(n)), (2)
n=0

where p1(n) = licost - cos(3Tn) — lasinf - sin(%7n) 4+ ¢1 and pa(n) = lysing -

cos(37n) + lzcosf - sin( %7 n) + 5. Thus, we will detect the inner boundary as the
ellipse on the image for which there will be sudden change in luminance summed
around its perimeter. In order to reduce computation time, the parameter set
(l1,12,¢1,c2,0) can be simplified depending on iris images. For example, in our
experiments using the CASIA iris image database ver. 1.0 and ver. 2.0, assuming
0 = 0 causes no degradation on its performance. The outer boundary, on the
other hand, is detected in a similar manner, with the path of contour summation
changed from ellipse to circle (i.e., [ = l2).

2.2 Iris Normalization and Eyelid Masking

Next step is to normalize iris to compensate for the deformations in iris texture.
We unwrap the iris region to a normalized (scale corrected) rectangular block
with a fixed size (256x128 pixels). In order to remove the iris region occluded
by the upper eyelid and eyelashes, we use only the lower half (Figure 2fa)) and
apply a polar coordinate transformation (with its origin at the center of pupil)
to obtain the normalized image shown in Figure[2l(b), where n; axis corresponds
to the angle of polar coordinate system and ns axis corresponds to the radius.

l"&’a ‘ m“

Fig. 2. Tris image: (a) original image forg(m1,m2), (b) normalized image, and (c)
normalized image with eyelid masking f(n1, n2)

In general, the eyelid boundary can be modeled as an elliptical contour. Hence
the same method for detecting the inner boundary can be applied to eyelid
detection. The detected eyelid region is masked as shown in Figure 2{(c).

2.3 Contrast Enhancement

In some situation, the normalized iris image has low contrast. Typical examples
of such iris images are found in the CASIA iris image database ver. 2.0. In such
a case, we improve the contrast by using local histogram equalization technique
[4]. Figure Bl shows an example of contrast enhancement.
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(a)

Fig. 3. Contrast enhancement: (a) normalized iris image, and (b) enhanced image

3 Matching

In this section, we describe the detailed process of effective region extraction
(section [3.2]), image alignment (section [3.3) and matching score calculation (sec-
tion B4l and section B3]). The key idea in this paper is to use phase-based image
matching for image alignment and matching score calculation. Before discussing
the algorithm, section 3.1l introduces the principle of phase-based image match-
ing using the Phase-Only Correlation (POC) function [10-12].

3.1 Fundamentals of Phase-Based Image Matching

Consider two N1 x Ny images, f(n1,n2) and g(ni,ns2), where we assume that the
index ranges are ny = —Mj---M; (M7 > 0) and ne = —Ms--- My (M2 > 0)
for mathematical simplicity, and hence Ny = 2M; + 1 and Ny = 2M5 + 1. Let
F(ki,k2) and G(k1,ke2) denote the 2D DFTs of the two images. F(ky, k) is
given by

M1 M2
F(ky, ko) = Z Z f(nl,nz)WJ@i"lWﬁé"z = Ap(ky, ko)edfr (krk2) - (3)
’I'Ll:*Ml ’nz:*Mz

where ky = —My--- My, ko = —Ms--- My, Wy, = eij?ﬂ, and Wy, = eijﬁ;.
Ap(k1, k2) is amplitude and 0p(k1, ko) is phase. G(k1, k2) is defined in the same
way. The cross-phase spectrum Rpg(k1, k2) between F(ki, k) and G(k1, k2) is
given by

F(k:h kz)G(kh k2) — i0(k1 ko)

R ki, ko) =
PR = e k) G, )

(4)

where G(k1, k2) is the complex conjugate of G(k1, k2) and 0(k1, k2) denotes the
phase difference 0p (k1, k2) — 0c(k1, k2). The POC function r4(n1,n2) is the 2D
inverse DFT of Rpg(k1, k) and is given by

My Mo

1 kiny e —
rrg(ni,na) = > > Rec(ky, k) Wymmwykr. o (5)
14V2
ki=—My ko=—DM>

When two images are similar, their POC function gives a distinct sharp peak.
When two images are not similar, the peak value drops significantly. The height
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Fig.4. Normalized iris image in (a) spatial domain, and in (b) frequency domain
(amplitude spectrum)

of the peak can be used as a similarity measure for image matching, and the lo-
cation of the peak shows the translational displacement between the two images.

In our previous work on fingerprint recognition [I2], we have proposed the
idea of BLPOC (Band-Limited Phase-Only Correlation) function for efficient
matching of fingerprints considering the inherent frequency components of fin-
gerprint images. Through a set of experiments, we have found that the same
idea is also very effective for iris recognition. Our observation shows that (i)
the 2D DFT of a normalized iris image sometimes includes meaningless phase
components in high frequency domain, and that (ii) the effective frequency band
of the normalized iris image is wider in k1 direction than in ko direction as illus-
trated in Figure @l The original POC function rf4(n1,n2) emphasizes the high
frequency components, which may have less reliability. We observe that this re-
duces the height of the correlation peak significantly even if the given two iris
images are captured from the same eye. On the other hand, BLPOC function
allows us to evaluate the similarity using the inherent frequency band within
iris textures.

Assume that the ranges of the inherent frequency band are given by k1 =
—K;---K; and ky = —Ks -+ - Ko, where 0<K;<M; and 0<K3<M,. Thus, the
effective size of frequency spectrum is given by L1 = 2K+ 1 and Ly = 2K5+ 1.
The BLPOC function is given by

K Ko

ri e (n,mg) = L11L2 Z Z Rpg(ki, ko)W w2 (6)
ki=—K1 ko=—FK>

where ny = —K7--- K7 and no = — K5 --- K5. Note that the maximum value of

the correlation peak of the BLPOC function is always normalized to 1 and does

not depend on L and L. Also, the translational displacement between the two

images can be estimated by the correlation peak position.

In our algorithm, K;/M; and K3/Ms are major control parameters, since
these parameters reflect the quality of iris images. In our experiments, K1 /M; =
0.6 and K5/Ms = 0.2 are used for the CASIA iris image database ver. 1.0, and
Ki/M; = 0.55 and Ko/Ms = 0.2 are used for the CASIA iris image database
ver. 2.0. It is interesting to note that iris images in both databases have effective
frequency band of only 20% in ko direction (radius direction of iris).
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Fig. 5. Example of genuine matching using the original POC function and the BLPOC
function: (a) iris image f(ni,n2), (b) iris image g(n1,n2), (c) original POC function
r¢g(n1,n2), and (d) BLPOC function rfgle (n1,n2) (K1/My = 0.6, Ko/M> = 0.2).

Figure [0 shows an example of genuine matching, where the figure compares
the original POC function r¢, and the BLPOC function rfgle (Ki/My = 0.6
and K3/Ms = 0.2). The BLPOC function provides a higher correlation peak
than that of the original POC function. Thus, the BLPOC function exhibits a
much higher discrimination capability than the original POC function.

In the following, we explain the step 5 —step 8 in Figure[ll The above mentioned
BLPOC function is used in step 6 (displacement alignment), step 7 (matching
score calculation) and step 8 (precise matching with scale correction).

3.2 Effective Region Extraction

Given a pair of normalized iris images f (n1,n2) and g(n1,n2) to be compared,
the purpose of this process is to extract effective regions of the same size from
the two images, as illustrated in Figure[6l(a). Let the size of two images f (n1,n2)
and g(ni,n2) be N1 ><N27 and let the widths of irrelevant regions in f(n1, n2)
and g(n1,n2) be wj and wg, respectively. We obtain f(n1,n2) and g(nq,n2) by
extracting effective regions of size Ny x {Ng — max(w 7 wg)} through eliminating
irrelevant regions such as masked eyelid and specular reflections.

On the other hand, a problem occurs when the extracted effective region
becomes too small to perform image matching. In this case, by changing the
parameter w, we extract multiple effective sub-regions from each iris image
as illustrated in Figure [B(b). In our experiments, we extract at most 6 sub-
regions from a single iris image by changing the parameter w as 55, 75 and 95
pixels.
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Fig. 6. Effective region extraction: (a) normal case, and (b) case when multiple sub-
regions should be extracted

3.3 Displacement Alignment

This step is to align the translational displacement 71 and 7o between the
extracted images f(ni1,n2) and g(ni,ns2). Rotation of the camera, head tilt
and rotation of the eye within the eye socket may cause the displacements
in normalized images (due to the polar coordinate transformation). The dis-
placement parameters (71, 72) can be estimated from the peak location of the
BLPOC function r){{gl %2(n1,ny). The obtained parameters are used to align the
images.

3.4 Matching Score Calculation

In this step, we calculate the BLPOC function rfgl Ka (n1,n2) between the aligned
images f(n1,n2) and g(ni,n2), and evaluate the matching score. In the case of
genuine matching, if the displacement between the two images is aligned, the
correlation peak of the BLPOC function should appear at the origin (ny,n2) =
(0,0). So, we calculate the matching score between the two images as the max-
imum peak value of the BLPOC function within the rxr window centered
at the origin, where we choose r = 11 in our experiments. When multiple
sub-regions are extracted at the “effective region extraction” process, the
matching score is calculated by taking an average of matching scores for the
sub-regions.

3.5 Precise Matching with Scale Correction

For some iris images, errors take place in estimating the center coordinates of
the iris and the pupil in the preprocessing. In such a case, slight scaling of the
normalized images may occur. And the matching score drops to a lower value
even if the given two iris images are captured from the same eye. Then, if the
matching score is close to threshold value to separate genuine and impostor, we
generate a set of slightly scaled images (scaled in the ny direction), and calculate
matching scores for the generated images. We select their maximum value as the
final matching score.
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4 Experiments and Discussions

This section describes a set of experiments using the CASIA iris image database
ver. 1.0 and ver. 2.0 [14] for evaluating matching performance.

— CASIA iris image database ver. 1.0. This database contains 756 eye
images with 108 unique eyes and 7 different images of each unique eye. We
first evaluate the genuine matching scores for all the possible combinations
of genuine attempts; the number of attempts is 7C5x108 = 2268. Next, we
evaluate the impostor matching scores for all the possible combinations of
impostor attempts; the number of attempts is 103C2 x7? = 283122.

— CASIA iris image database ver. 2.0. This database contains 1200 eye
images with 60 unique eyes and 20 different images of each unique eye. We
first evaluate the genuine matching scores for all the possible combinations
of genuine attempts; the number of attempts is 90C2x60 = 11400. Next,
we evaluate the impostor matching scores for oCox4? = 28320 impostor
attempts, where we take 4 images for each eye and make all the possible
combinations of impostor attempts.
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Fig. 7. ROC curve and EER: (a) CASIA iris image database ver. 1.0, and (b) ver. 2.0

Figure [(a) shows the ROC (Receiver Operating Characteristic) curve of
the proposed algorithm for the database ver. 1.0. The ROC curve illustrates
FNMR (False Non-Match Rate) against FMR (False Match Rate) at different
thresholds on the matching score. EER (Equal Error Rate) shown in the fig-
ure indicates the error rate where FNMR and FMR are equal. As is observed
in the figure, the proposed algorithm exhibits very low EER (0.0032%). Some
reported values of EER from [4] using the CASIA iris image database ver. 1.0
are shown in the same figure for reference. Note that the experimental condition
in [4] is not the same as our case, because the complete database used in [4] is
not available at CASIA [14] due to the limitations on usage rights of the iris
images.
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Figure [[(b) shows the ROC curve for the database ver. 2.0. The quality
of the iris images in this database are poor, and it seems that the recogni-
tion task is difficult for most of the reported algorithms. Although we cannot
find any reliable official report on recognition test for this database, we believe
that our result (EER=0.58%) may be one of the best performance records that
can be achieved at present for this kind of low-quality iris images. All in all,
the above mentioned two experimental trials clearly demonstrate a potential
possibility of phase-based image matching for creating an efficient iris recog-
nition system.

5 Conclusion

The authors have already developed commercial fingerprint verification units [13]
using phase-based image matching. In this paper, we have demonstrated that the
same approach is also highly effective for iris recognition task. It can also be sug-
gested that the proposed approach will be highly useful for multimodal biometric
system having iris and fingerprint recognition capabilities.

Acknowledgment. Portions of the research in this paper use the CASIA iris
image database ver 1.0 and ver 2.0 collected by Institute of Automation, Chinese
Academy of Sciences.
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