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Abstract. This paper presents an ultrasound (US) volume reconstruc-
tion method only from US image sequences using deep learning. The
proposed method employs the convolutional neural network (CNN) to
estimate the position of a 2D US probe only from US images. Our CNN
model consists of two networks: feature extraction and motion estima-
tion. We also introduce the consistency loss function to enforce. Through
a set of experiments using US image sequence datasets with ground-truth
motion measured by a motion capture system, we demonstrate that the
proposed method exhibits the efficient performance on probe localization
and volume reconstruction compared with the conventional method.

Keywords: ultrasound · volume reconstruction · CNN · probe localiza-
tion.

1 Introduction

Ultrasound (US) imaging has a number of advantages in medical diagnosis such
as high spatial resolution, real-time imaging, and non-invasiveness. Recently,
three-dimensional (3D) US [13] has attracted much attention as a valuable imag-
ing tool for a diagnostic procedure because of the above advantages of US. If
3D US can be acquired using only the current US system with a 2D US probe,
3D US may be allowed to be used in place of other imaging modalities such as
CT, MRI or PET, e.g., the point of care in an emergency situation requiring
the rapid diagnosis, muscle and blood analysis in sports medicine, etc. Among
3D US acquisition protocols, we focus on the freehand protocol [4] because of its
cost-effectiveness and flexibility. 3D volume data can be reconstructed from a 2D
US image sequence by integrating a set of US images according to the position
of the US prove. The quality of 3D volume data significantly depends on the
accuracy of probe localization, i.e., 3D motion estimation of a 2D US probe in
the acquisition protocol with freehand scanning.
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The initial approach of localizing a 2D US probe is to use the special devices
such as an electromagnetic tracking device [17, 7] and an optical tracker [6, 18].
The accuracy of probe localization is high, while such special devices require
much cost and may sacrifice smooth scanning. The simple approach is to use
markers to estimate the motion of a 2D US probe [9, 16, 12]. The cost of the
system is cheap, while markers are attached on the skin surface, resulting in
decreasing the flexibility and acceptability. Another approach is to use a camera,
which is mounted on a 2D US probe. The motion of the probe is estimated from
a video sequence of skin patterns captured by a camera using simultaneous
localization and mapping (SLAM) [19] or structure from motion (SfM) [11, 10].
This approach is cost-effective, while a camera may be intrusive for an operator.
The challenging task is to estimate the motion of a US probe only from a US
image sequence. Balakrinshnan et al. [1] proposed a similarity metric, which
computes the similarity between two consecutive US images by correlating the
parametric representation of image texture, to estimate out-of-plane motion in
US probe sweeping. Prevost et al. [15] proposed a 2D US probe localization
method using a convolutional neural network (CNN), which estimates the motion
of a 2D US probe by image-based tracking. This method learns the relative 3D
translations and rotations from a pair of images with additional information
of optical flow, which is used to improve the accuracy of motion estimation.
The CNN architecture of this method is relatively simple, which consists of 4
convolution layers, 2 pooling layers, and 2 fully-connected layers. Their latest
work in [14] also used an inertial measurement unit (IMU), which was mounted
on a US prove, to improve the accuracy of estimating 3D rotation.

In this paper, we propose a 2D US probe localization method only from US
image sequences using deep learning. We consider a new CNN architecture for
estimating the motion between two US images inspired by Prevost’s work [15,
14]. Our CNN architecture includes motion features obtained from FlowNetS
[2]. We introduce the consistency loss function to improve the accuracy of mo-
tion estimation. We create a large-scale dataset of US image sequences with the
ground-truth probe motion for evaluating the methods. The US image sequences
are acquired by scanning forearm, breast phantom and hypogastric phantom,
where the number of images of each target is 30,801, 8,940, and 6,242, respec-
tively. The contribution of this work is summarized as follows:

1. propose a new CNN architecture for localizing a 2D US probe for volume
reconstruction and

2. introduce a consistency loss function to improve the accuracy of probe lo-
calization.

2 Methods

This section describes our CNN architecture for estimating the motion between
two US images and its loss functions to improve the accuracy of motion estima-
tion.
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Fig. 1. Network architecture of our proposed CNN.

2.1 Network Architecture

In the previous work by Prevost et al. [15, 14], they proposed a simple CNN
architecture for estimating the motion between two US images, which consists
of 4 convolution layers, 2 pooling layers, and 2 fully-connected layers. They used
4-channel input, which consists of the two US images and the two components of
the vector field estimated by optical flow estimation [3]. The optical flow between
the two US images is not always accurately estimated by [3] from our empir-
ical observation. Fig. 1 shows the network architecture of our proposed CNN
for estimating the motion between two US images. This architecture consists
of localization and optical flow estimation networks. In this paper, we employ
ResNet34 [8] for localization network and the encoder of FlowNetS [2] for op-
tical flow estimation network. The feature vector extracted from ResNet34 is
reduced to a 512-dimensional feature vector by Global Average Pooling (GAP).
The feature vector extracted from FlowNetS is also reduced to a 512-dimensional
feature vector by GAP and the fully-connected layer. Then, two feature vectors
are concatenated before the last two fully-connected layers. The output of CNN
is 6 parameters consisting of 3 rotation angles (θx, θy, θz) and 3 translations
(tx, ty, tz), where p = {θx, θy, θz, tx, ty, tz}. We employ FlowNetS pre-trained
by the Flying Chairs dataset3 and all the weight parameters are fixed in both
training and test.

2.2 Loss function

We employ the loss function defined by the Euclidean distance between estimated
6 parameters and the ground truth as well as the previous work [15, 14], which

3 https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.

en.html
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is given by
LEuc = ||P g − P̂ ||2, (1)

where P g indicates the ground-truth vector of parameters and P̂ indicates the
estimated vector. We also consider introducing the new loss function to improve
the accuracy of the motion between US image frames. Let the rotation and the
translation from image frame If to If+1 be Rf→f+1 and tf→f+1, and their
inverses be Rf+1→f and tf+1→f . Rf→f+1 and tf→f+1 are estimated from If
and If+1 by CNN, and Rf+1→f and tf+1→f are also estimated by CNN when
reversing the order of the inputs. A point on If should be reprojected onto
the same position when applying the transformation [Rf→f+1|tf→f+1] and then
[Rf+1→f |tf+1→f ]. This is known as the reprojection error in stereo vision, and
we can apply the similar idea of the left-right consistency loss in stereo vision [5]
to our method. Let a point on the image frame If be Pf and a point reprojected
from the consecutive image frame If+1 be P ′

f , respectively. The point P ′
f is

calculated using the rotation and translation between the two image frames as
follows:

P ′
f = Rf+1→f (Rf→f+1Pf1 + tf→f+1) + tf+1→f , (2)

where We consider the following consistency loss function:

LCons = ||Pf − P ′
f ||2. (3)

3 Materials

We create a large-scale dataset of US image sequences with the ground-truth
probe motion for evaluating the methods. The target objects are forearm of 5
subjects, breast phantom and hypogastric phantom in the dataset. US image
sequences are acquired by SONIMAGE HS1 (Konica Minolta, Inc.) with L18-4
linear probe (center frequency: 10MHz) for forearm and breast phantom and
with C5-2 convex probe (center frequency: 3.5MHz) for hypogastric phantom,
where the field of view (FOV) of US images is 40×38mm, the frame rate is
30fps, the recording time is about 6 seconds (180 frames), and the size of each
US image frame is 442 × 526 pixels. The number of scans (image frames) is
190 (30,801) for forearm, 60 (8,940) for breast phantom, and 40 (6,242) for
hypogastric phantom. The ground-truth position of the US probe is measured
by V120:Trio (OptiTrack), where 5 markers are attached on the US probe to
capture its motion.

4 Experiments

In the experiments, we separate the dataset into training, validation, and test
data, where the training data is 180 scans (27,948 image frames) from forearm
of 2 subjects and two phantoms, the validation data is 30 scans (5,176 image
frames) from forearm of 1 subject, and the test data is 80 scans (12,859 frames)
from forearm of 2 subjects. Each image frame with 442× 526 pixels is cropped
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(a) Forearm (b) Breast phantom (c) Hypogastric phantom

Fig. 2. Example of the US image frame acquired from (a) forearm, (b) breast phantom,
and (c) hypogastric phantom.

the center region with 442× 442 pixels, and then is resized to 256× 256 pixels.
The pixel value of each resized image is normalized to have zero mean and the
unit variance.

The training parameters of our method are as follows: the optimizer is Ada-
Grad, the learning rate is 1e-3, the batch size is 64, the number of epochs is
30, and 25% dropout is added after the fully-connected layers except the last
one. All the methods are implemented using PyTorch 1.0.0 on Intel(R) Xeon(R)
W-2133 CPU 3.60GHz with GeForce RTX 2080 Ti. We evaluate the accuracy
of each parameter estimated by the conventional method [15] and our methods
using mean absolute error (MAE), where we consider 4 combinations for the
proposed method in the following ablation study. Note that we implemented the
conventional method according to the paper [15] since an official implementation
is not provided. The conventional method was trained and evaluated under the
same experimental condition.

Table 1 shows the summary of the ablation study. There is no significant dif-
ference in estimation accuracy depending on the network architecture comparing
the first and second rows of Table 1. The estimation accuracy is comparable when
adding FlowNetS to the proposed method (i) comparing the second and third
rows of Table 1. The estimation accuracy is improved when adding the consis-
tency loss function to the proposed method (i) comparing the first and third
rows of Table 1 The combination of loss functions can limit the search space
of parameter optimization in CNN. The proposed method (iv), which employs
all the techniques, exhibits the best estimation accuracy in the methods except
for tz as observed in the forth row of Table 1. Fig. 3 shows the temporal varia-
tion of parameters estimated by each method. The conventional method cannot
estimate large motion and therefore show the average temporal variation. The
proposed method (i) shows a temporal variation close to the ground truth, while
it may deviate significantly. The proposed method (iv) shows similar temporal
variation to the ground truth for all the parameters except for tz.
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Table 1. Summary of the ablation study (OF: Optical flow, FN: FlowNetS).

Method OF FN LEuc LCons
MAE(degree/mm)

θx θy θz tx ty tz
Prevost et al. [14] X X 0.58 1.28 0.49 0.69 0.16 0.77

Ours (i) X X 0.60 1.26 0.52 0.72 0.18 0.76
(ii) X X X 0.61 1.28 0.52 0.74 0.18 0.78
(iii) X X X 0.56 1.23 0.47 0.66 0.15 0.82
(iv) X X X X 0.53 1.21 0.47 0.64 0.15 0.80
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Fig. 3. Temporal variation of parameters estimated by each method.

Fig. 4 shows the reconstructed US volume data using the probe location of
the ground truth, the conventional method, and the proposed methods (i)∼(iv).
Each volume data is reconstructed using StradView4. The conventional method
cannot handle the large motion of the US probe since the estimated motion
is similar to the linear motion. Although the proposed methods (i) and (ii)
attempt to estimate a large motion of the US probe, the estimated motion is
rather large. The proposed methods (iii) and (iv) exhibit better performance
than other methods since the shape of the reconstructed volume is similar to
that of the ground truth.

5 Conclusion

In this paper, we proposed a 2D US probe localization method only from US
image sequences using deep learning. Our CNN architecture extracts texture
features and motion features, and estimate the motion between two US image

4 https://mi.eng.cam.ac.uk/Main/StradView
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(a) Ground Truth (b) Conventional Method

(d) Proposed Method (ii)

(f) Proposed Method (iv)

(c) Proposed Method (i)

(e) Proposed Method (iii)

Fig. 4. Example of reconstructed US volume data: (a) ground truth, (b) conventional
method, and (c)∼(f) proposed method (i)∼(iv).

frames. We considered the combination of loss functions to improve the accuracy
of motion estimation. Through a set of experiments using our dataset of forearm,
breast phantom, and hypogastric phantom, we demonstrated that our method
exhibited better accuracy of probe localization than the conventional method.
In future work, we will develop a 2D US probe with a small camera to support a
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large variety of probe motion to realize a free-hand 3D US reconstruction system
for practical use.

References

1. Balakrishnan, S., Patel, R., Illanes, A., Friebe, M.: Novel similarity metric for
image-based out-of-plane motion estimation in 3D ultrasound. Proc. Int’l Conf.
IEEE Engineering in Medicine and Biology Society pp. 5739–5742 (Jul 2019)

2. Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., Smagt,
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