Graph-based individual representation for evolutionary synthesis of arithmetic circuits

Naofumi HOMMA
Takafumi AOKI
Tatsuo HIGUCHI

Graduate School of Information Sciences,
Tohoku University, Japan

GSIS, Tohoku University
What is arithmetic circuit structure?

Array multiplier for two’s complement numbers.

Booth’s algorithm array multiplier.

Pipelined 5 × 5 array multiplier for unsigned numbers.

There is no systematic way of optimizing the circuit structure for a given function.
High-level synthesis flow

System specification → Design flow → Netlist

Arithmetic circuit Component library

Arithmetic synthesis

Domain-specific knowledge

GSIS, Tohoku University
Is it possible to synthesize arithmetic circuits?

Graph-based evolutionary optimization technique

Evolutionary Graph Generation (EGG)

Key ideas of EGG

• To employ general graph structures as individuals
 - Search space reduction by graph theoretic constraints
 - Graph-based abstraction of arithmetic algorithms

• To introduce subgraph-based evolutionary operations
 - Hypothesis: every arithmetic circuit is a collection of many useful sub-circuits, and the total functionality of a circuit emerges from a collective behavior of its sub-circuits.
Constant-coefficient multiplier synthesis

Ex. \(Y=10075X \) (16-bit precision)

Conventional best multiplier
(CSD encoding and Wallace tree)

Solution generated by the EGG system

GSIS, Tohoku University
Outline

- Backgrounds
- Basic concept of Evolutionary Graph Generation (EGG)
- System implementation for constant-coefficient multiplier synthesis
- Experimental result
- Conclusion and prospects

GSIS, Tohoku University
Graph-based individual representation

Circuit Graph \(G = (N^G, T^G_0, T^G_1, \nu^G_0, \nu^G_1, \varepsilon^G) \)

No unconnected terminal = \textbf{Complete circuit graph}

To guarantee valid circuit structures, the EGG system generates only complete circuit graphs.

GSIS, Tohoku University
EGG system flow

Begin

Generate initial circuit graphs

Evaluate circuit graphs by symbolic verification

Determine circuit graphs for the next generation

Is the number of generations maximum? NO

Perform evolutionary operations, Crossover and Mutation, to generate offsprings

Select parent circuit graphs

YES

End

GSIS, Tohoku University
Evolutionary Operations

Crossover

Gp1

Gp1'

Gc1

Gp2

Gc2

Gp2'

Mutation

Gm

Gm'

Gn

Gn'
Implementation for constant-coefficient multiplier synthesis

Constant-coefficient multiplication: \(Y = RX \)

Why constant-coefficient multipliers?

- There are many possible choices for the multiplier structure for a specific coefficient.
- The complexity of the multiplier structure significantly varies with the coefficient \(R \).
- There is no systematic way of predicting the best structure even if we have the knowledge of fundamental arithmetic components.

GSIS, Tohoku University
Combinational constant-coefficient multipliers

- Partial product generation: **CSD encoding**
 \[124_{10} = 01111011_2 = 10000\overline{1}00_{CSD}\]
- Partial product accumulation: **Wallace tree**
Design specification

- Table of nodes used in the EGG system

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-2 counter</td>
<td>3-2</td>
<td>3-input 2-output carry-free addition with output branches</td>
</tr>
<tr>
<td>N-bit shifter</td>
<td>N-S</td>
<td>N-bit arithmetic shifter (N:1,2,4)</td>
</tr>
<tr>
<td>Final-stage adder</td>
<td>FSA</td>
<td>Carry-propagate addition with a bias canceling stage</td>
</tr>
</tbody>
</table>

- FSA node is directly connected with OUT node.
- Individuals: Circuit graphs without any feedback loops
Individual circuit graph

Complete circuit graph without any feedback loops (directed acyclic graphs)

\[Y = \hat{R}X + f(X) \]

Ex., 4-bit unsigned binary data

GSIS, Tohoku University
Evaluation

Fitness = \(F + P \) \((P_{\text{max}} / F_{\text{max}} \approx 5/100)\).

Functionality measure \((F)\)**

Functionality measure evaluates validity of the logical function compared with the target coefficient.

\(\hat{R} \): Coefficient obtained from circuit graph

\(R \): Target coefficient

Performance measure \((P)\)**

\[P = \frac{C}{DA} \]

\(D \): Number of counter stages

\(A \): Number of inter-module interconnection

\(C \): Constant adjusted to keep the ratio of \(P \) to \(F \).
Experimental condition

• Generate 50 distinct multipliers whose coefficients are selected randomly in the range of -32768 to 32767.

• Compare the solutions generated by the EGG system and the corresponding CSD multipliers using Wallace tree architecture.

<table>
<thead>
<tr>
<th>Main parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size</td>
</tr>
<tr>
<td>Crossover rate</td>
</tr>
<tr>
<td>Max. num. of generations</td>
</tr>
<tr>
<td>Mutation rate</td>
</tr>
<tr>
<td>Max. num. of nodes</td>
</tr>
<tr>
<td>Operand word-length</td>
</tr>
</tbody>
</table>
Experimental results

- Graph showing the DA complexity, which is a product of the number of counter stages (D) and the number of interconnections (A), for different index values.

- The graph compares two solutions:
 - Solution by EGG
 - CSD + Wallace tree

GSIS, Tohoku University
Example of evolution process

Ex. \(Y = 26204X \)

- **Generations**
- **DA vs. **
- **Carry-Propagate Adder**

\[F = 17 \quad DA = 1985 \]
Example of evolution process

Ex. $Y=26204X$

$F = 100 \quad DA = 2345$
Example of evolution process

Ex. \(Y = 26204X \)

\[
F = 100 \quad DA = 2070
\]
Transition of the best individual fitness

Average computation time required to obtain the solution is about 3.6 hours on a Linux PC with 700 MHz Pentium III.
Conclusion

Arithmetic circuit synthesis using Evolutionary Graph Generation (EGG)

Key ideas of EGG

- To employ general graph structures as individuals
- To introduce subgraph-based evolutionary operations

Ex., constant-coefficient multiplier synthesis

- All the solutions generated by the EGG system are comparable with the conventional best multipliers.

URL: http://www.higuchi.ecei.tohoku.ac.jp/egg/

GSIS, Tohoku University
EGG framework

URL: http://www.higuchi.ecei.tohoku.ac.jp/egg/

GSIS, Tohoku University