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SUMMARY This paper presents an algorithm for finger-
print image restoration using Digital Reaction-Diffusion System
(DRDS). The DRDS is a model of a discrete-time discrete-space
nonlinear reaction-diffusion dynamical system, which is useful for
generating biological textures, patterns and structures. This pa-
per focuses on the design of a fingerprint restoration algorithm
that combines (i) a ridge orientation estimation technique using
an iterative coarse-to-fine processing strategy and (ii) an adaptive
DRDS having a capability of enhancing low-quality fingerprint
images using the estimated ridge orientation. The phase-only
image matching technique is employed for evaluating the similar-
ity between an original fingerprint image and a restored image.
The proposed algorithm may be useful for person identification
applications using fingerprint images.
key words: reaction-diffusion system, pattern formation, digital
signal processing, digital filters, fingerprint restoration

1. Introduction

Living organisms can create a remarkable variety of
patterns and forms from genetic information. In em-
bryology, the development of patterns and forms is
sometimes called Morphogenesis. In 1952, Alan Turing
suggested that a system of chemical substances, called
morphogens, reacting together and diffusing through a
tissue, is adequate to account for the main phenomena
of morphogenesis [1]. From an engineering viewpoint,
the insights into morphogenesis provide important con-
cepts for devising a new class of intelligent signal pro-
cessing algorithms inspired by biological pattern forma-
tion phenomena [2]–[4].

Recently, we have proposed a framework of Digital
Reaction-Diffusion System (DRDS)—a discrete-time
discrete-space reaction-diffusion dynamical system—
for designing signal processing models exhibiting active
pattern/texture formation capability [5]. In Ref. [5], we
have already presented the basic idea of fingerprint en-
hancement/restoration using a special DRDS, called an
adaptive DRDS, which can control the orientation of
pattern formation for every pixel. Our experimental ob-
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servation, however, shows that the adaptive DRDS with
simple orientation estimation cannot provide enough
performance for poor quality fingerprint images. Also,
systematic experimental evaluation of restoration per-
formance in terms of identification rate has not been
presented yet.

In this paper, we focus on the design of an im-
proved fingerprint restoration algorithm that combines
(i) a ridge orientation estimation technique using an
iterative coarse-to-fine processing strategy and (ii) an
adaptive DRDS having a capability of generating the
most likely fingerprint pattern using the estimated ridge
orientation. The restoration capability of the new al-
gorithm is evaluated by using the phase-only matching
technique [6], which has already been applied to prac-
tical fingerprint identification systems by the authors’
group [7]. The coarse-to-fine orientation estimation
technique directly coupled with DRDS pattern forma-
tion dynamics makes possible significant improvement
in fingerprint identification performance. The new al-
gorithm is useful for identifying a person even from a
blurred fingerprint image and could enhance the per-
formance of conventional fingerprint identification sys-
tems.

So far, there are few works on the restoration
of original fingerprint patterns from incomplete fin-
gerprint images. Most of the papers discuss fin-
gerprint image enhancement rather than fingerprint
restoration [8], [9]. The reported enhancement algo-
rithms usually focus on passive image processing (with-
out changing the original ridge characteristics) for ex-
tracting minutiae from input fingerprint images. The
use of morphogenesis principle for fingerprint enhance-
ment/restoration allows more active processing of fin-
gerprint images, including the generation of most likely
local patterns that interpolates missing fingerprint tex-
tures. This new idea was originally discussed in Ref. [2],
but the presented idea was formulated with differen-
tial equations and was applied only to limited examples
of fingerprint enhancement. In this paper, we present
more systematic approach to the design and evaluation
of a morphogenesis-based fingerprint restoration algo-
rithm within the framework of DRDS.

This paper is organized as follows: Sect. 2 defines
a general DRDS and shows an example of fingerprint
enhancement using DRDS. Section 3 describes a fin-
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gerprint restoration algorithm combining (i) a coarse-
to-fine ridge orientation estimation strategy and (ii) an
adaptive-DRDS pattern generator. Section 4 describes
a set of experiments for evaluating restoration perfor-
mance of the proposed algorithm and compares the new
algorithm (with coarse-to-fine) with the original algo-
rithm (without coarse-to-fine). In Sect. 5, we end with
some conclusions.

2. Digital Reaction-Diffusion System

A Digital Reaction-Diffusion System (DRDS)—a model
of a discrete-time discrete-space reaction-diffusion dy-
namical system—can be naturally derived from the
original reaction-diffusion system defined in continuous
space and time (see [5] for detailed mathematical for-
mulation). The general DRDS can be obtained as

x(n0+1, n1, n2)
= x(n0, n1, n2)+R(x(n0, n1, n2))
+D(l ∗ x)(n0, n1, n2), (1)

where

x = [x1, x2, · · · , xM ]T ,

xi : concentration of the i-th morphogen,

R = T0R̃ = [R1(x), R2(x), · · · , RM (x)]T ,

Ri(x) : reaction kinetics for the i-th morphogen,

D = diag[D1, D2, · · · , DM ],
diag : diagonal matrix,
Di : diffusion coefficient of the i-th morphogen,

l(n1, n2)

=




1
T 2
1

(n1, n2) = (−1, 0), (1, 0)
1

T 2
2

(n1, n2) = (0,−1), (0, 1)
−2( 1

T 2
1
+ 1

T 2
2
) (n1, n2) = (0, 0)

0 otherwise,

and ∗ is the spatial convolution operator defined as

(l ∗ x)(n0, n1, n2)

=




(l ∗ x1)(n0, n1, n2)
(l ∗ x2)(n0, n1, n2)

...
(l ∗ xM )(n0, n1, n2)




=




1∑
p1=−1

1∑
p2=−1

l(p1, p2)x1(n0, n1 − p1, n2 − p2)

1∑
p1=−1

1∑
p2=−1

l(p1, p2)x2(n0, n1 − p1, n2 − p2)

...
1∑

p1=−1

1∑
p2=−1

l(p1, p2)xM (n0, n1 − p1, n2 − p2)




.

The DRDS described by (1) can be understood as a
3-D nonlinear digital filter. We first store an initial (in-
put) image in a specific morphogen, say xi(0, n1, n2), at
time 0. After computing the dynamics for n0 steps, we
can obtain the output image from one of the M mor-
phogens, say xi(n0, n1, n2), at time n0. In general, lin-
ear digital filters with guaranteed stability are widely
used in many signal processing applications. In our
application, however, we employ the DRDS with non-
linear reaction kinetics R(x) satisfying the diffusion-
driven instability condition [5]. In this case, DRDS
becomes an unstable 3-D nonlinear digital filter having
significant pattern formation capability.

In this paper, we use the two-morphogen DRDS
(M = 2) with the Brusselator reaction kinetics, which
is one of the most widely studied chemical oscillators
[10]. The two-morphogen Brusselator-based DRDS is
defined as follows:[

x1(n0+1, n1, n2)
x2(n0+1, n1, n2)

]
=

[
x1(n0, n1, n2)
x2(n0, n1, n2)

]

+
[

R1(x1(n0, n1, n2), x2(n0, n1, n2))
R2(x1(n0, n1, n2), x2(n0, n1, n2))

]

+
[

D1(l ∗ x1)(n0, n1, n2)
D2(l ∗ x2)(n0, n1, n2)

]
, (2)

where

R1(x1, x2) = T0

{
k1 − (k2 + 1)x1 + x2

1x2

}
,

R2(x1, x2) = T0(k2x1 − x2
1x2).

In this paper, we employ the parameter set: k1 = 2,
k2 = 4, T0 = 0.01, D1 = T0 and D2 = 5T0 (see Ap-
pendix).

The DRDS thus defined can be used to enhance
fingerprint patterns. To do this, we first set the ini-
tial fingerprint image in x1(0, n1, n2), at time 0. Note
that spatial sampling parameters T1 and T2 should be
adjusted according to the inherent spatial frequency of
the given fingerprint image. The dynamics (2) has the
equilibrium (x1, x2) = (2, 2), and the variation ranges
of variables (x1, x2) are bounded around the equilib-
rium point as 1� x1 � 3 and 1� x2 � 3 in the case of
given parameter set. Hence, we first scale the [0,255]
gray-scale fingerprint image into [1,3] range. The scaled
image becomes the initial input x1(0, n1, n2), while the
initial condition of the second morphogen is given by
x2(0, n1, n2) = 2. The zero-flux Neumann bound-
ary condition is employed for computing the dynam-
ics. After n0 steps of DRDS computation, we obtain
x1(n0, n1, n2) as an output image, which is scaled back
into the [0,255] gray-scale image to produce the final
output. Figure 1 shows the enhancement of a finger-
print image using DRDS.

Our initial observation, however, shows that the
DRDS with a spatially isotropic diffusion term (2) of-
ten produces some broken ridge lines in processing fin-
gerprint images as shown in Fig. 1, since it does not
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Fig. 1 Fingerprint enhancement: (a) original image, (b)–(e) enhanced images.

take account of the local orientation of ridge flow. In
order to solve this problem, the next section defines an
adaptive DRDS model, in which we can use the local
orientation of the ridge flow in a fingerprint image to
guide the action of DRDS. This can be realized by in-
troducing orientation masks to be convolved with the
diffusion terms in DRDS (2).

3. Fingerprint Restoration Algorithm Using
Adaptive DRDS and Coarse-to-Fine Orien-
tation Estimation

In this section, we modify the definition of the simple
two-morphogen DRDS (2) to have an adaptive DRDS
model dedicated to fingerprint restoration tasks. The
two-morphogen adaptive DRDS with the Brusselator
reaction kinetics can be written as[

x1(n0+1, n1, n2)
x2(n0+1, n1, n2)

]
=

[
x1(n0, n1, n2)
x2(n0, n1, n2)

]

+
[

R1(x1(n0, n1, n2), x2(n0, n1, n2))
R2(x1(n0, n1, n2), x2(n0, n1, n2))

]

+
[

D1(hn1n2
1 ∗ l ∗ x1)(n0, n1, n2)

D2(hn1n2
2 ∗ l ∗ x2)(n0, n1, n2)

]
, (3)

where hm1m2
i (n1, n2) is an orientation mask at the pixel

(m1, m2) for the i-th morphogen.
The orientation mask hm1m2

1 (n1, n2) at the pixel
(m1, m2) is a 32× 32 matrix of real coefficients defined
within the window (n1, n2) = (−16,−16) ∼ (15, 15).
The mask hm1m2

1 (n1, n2) controls the dominant orien-
tation of the generated pattern at every pixel (m1, m2)
depending on the local ridge flow in the given finger-
print image. Figure 2 shows the 180 distinct orientation
masks used in our system corresponding to the discrete
angles from 0◦ to 179◦.

The orientation mask having the angle θ is calcu-
lated as illustrated in Fig. 3. Within the 32 × 32 win-
dow in frequency domain, we define a mask pattern
Hm1m2

1 (jω1, jω2) for the angle θ as shown in Fig. 3,
where

Hm1m2
1 (jω1, jω2)=




1 for unstable frequency band
(black pixels in Fig. 3(a)),

2 otherwise.

The orientation mask hm1m2
1 (n1, n2) for the angle θ

Fig. 2 180 orientation masks used in our experiments.

Fig. 3 Orientation mask for angle θ shown in (a) frequency
domain (ω1, ω2), and in (b) space (n1, n2).

(shown in Fig. 3(b)) is obtained as an inverse Fourier
transform of Hm1m2

1 (jω1, jω2). The orientation mask
hm1m2

2 (n1, n2) for the second morphogen, on the other
hand, has the value 1 at the center (n1, n2) = (0, 0), and
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Fig. 4 Fingerprint restoration algorithm with coarse-to-fine
orientation estimation.

equals to 0 for other coordinates (n1, n2). Thus, the dy-
namics for the morphogen x2(n0, n1, n2) does not take
account of the local orientation.

In Ref. [5], we have presented the basic idea of fin-
gerprint enhancement/restoration using the adaptive
DRDS. For fingerprint restoration, we first detect the
dominant orientation θ of local ridge flow at every pixel
(m1, m2) in a given fingerprint image. Then, we se-
lect the mask pattern corresponding to the angle θ in
Fig. 2 as hm1m2

1 (n1, n2). In our experiment, we employ
the Fourier transform of a local fingerprint image to
estimate its dominant orientation. Our experimental
observation, however, shows that the adaptive DRDS
with simple orientation estimation strategy cannot pro-
vide enough performance for poor quality fingerprint
images.

Addressing this problem, we introduce a ridge ori-
entation estimation technique using an recursive coarse-
to-fine processing strategy. The computation flow
of the proposed restoration algorithm is described in
Fig. 4. As illustrated in Fig. 5, we first partition the
fingerprint image into p2 sub-images, where the initial
value of p is 2, and select p2 different orientation masks
for p2 sub-images independently by estimating domi-
nant ridge orientation in each sub-image. Note that the
pixels within a common sub-image employ the same ori-
entation mask hm1m2

1 (n1, n2). Using the obtained ori-
entation masks, we run the adaptive DRDS for 10 steps
(n0 = 0 ∼ 9) to interpolate the incomplete fingerprint

Fig. 5 Coarse-to-fine orientation estimation scheme.

pattern. After incrementing the image partitioning fac-
tor p (i.e., p = 3), we perform the same tasks (i.e., ridge
orientation estimation and pattern reshaping by adap-
tive DRDS for n0 = 10 ∼ 19) in every sub-image. This
process is repeated by incrementing the image parti-
tioning factor p until p = 9 (n0 = 20 ∼ 89). For p > 9,
we estimate pixel-wise local orientation, give distinct
orientation masks for all the pixels, and run the adap-
tive DRDS for 10 steps. This process is carried out
until n0 = 500 by updating orientation masks in every
10 steps. The proposed algorithm gradually increases
the precision of pattern formation instead of going di-
rectly into pixel-wise orientation control. This recursive
strategy makes possible significant improvement in the
quality of restored fingerprint images.

4. Experiments and Discussion

This section describes a set of experiments for evaluat-
ing restoration performance of the proposed algorithm.
The problem considered here is to restore the original
fingerprint image from its “subsampled” image. For
this purpose, we generate a subsampled fingerprint im-
age from the original image as follows (see Fig. 6): (i)
partition the original image into R×S-pixel rectangu-
lar blocks, and (ii) select one pixel randomly from every
block and eliminate all the other pixels (set 127, middle
gray-level, to the pixels). The image thus obtained has
the same size as the original image, but the number of
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effective pixels is reduced to 1/(R × S).
The restoration capability of the proposed algo-

rithm is evaluated by calculating the similarity between
the original fingerprint image and the restored image.
To measure the similarity, we employ the phase-only
image matching technique [6] (illustrated in Fig. 7),
which has been proved to have an efficient discrimi-
nation capability in practical fingerprint identification
tasks. In this experiment, we capture 15 distinct fin-
gerprint images (Finger01–Finger15) from 15 persons
using a fingerprint recognition system (Yamatake Cor-
poration, “FriendTouch System” [7]). The captured
image size is 256 × 256. Restoration experiments are

Fig. 6 1/(R × S) subsampling.

Fig. 7 Phase-only matching technique.

Fig. 8 Fingerprint image restoration from a 1/(4 × 4)-subsampled image of Finger01.

Fig. 9 Fingerprint image restoration from a 1/(5 × 5)-subsampled image of Finger01.

carried out for various subsampling rates: 1/(3 × 3),
1/(3 × 4), 1/(4 × 4), 1/(4 × 5), 1/(5 × 5), 1/(5 × 6),
1/(6× 6), 1/(6× 7), 1/(7× 7), 1/(7× 8) and 1/(8× 8).

In the following, we focus on the result of restora-
tion from 1/(4×4)-, 1/(5×5)- and 1/(6×6)-subsampled
images, for example. Figures 8, 9 and 10 show the
restoration of fingerprint images from the subsampled
images, where the subsampling rate is 1/(4×4), 1/(5×
5) and 1/(6 × 6), respectively. Every figure includes
the original image, the subsampled image (n0 = 0) and
restored images at n0 = 100, 200 and 400, respectively.
We can observe that the fingerprint pattern is recon-
structed from the subsampled image gradually as time
step n0 increases. Figure 11 shows the restoration of
fingerprint image from the 1/(6× 6) subsampled image
without employing coarse-to-fine processing, for com-
parison. Figure 12 shows the visualized orientation of
ridge flow for the case of 1/(6 × 6) subsampling. It
is difficult to estimate the correct orientation informa-
tion from the subsampled image as shown in Fig. 12(b).
Figures 12(c)–(l) show the estimated orientation using
the coarse-to-fine technique described in the last sec-
tion. Figure 12(l) shows that the estimated orientation
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Fig. 10 Fingerprint image restoration from a 1/(6 × 6)-subsampled image of Finger01.

Fig. 11 Fingerprint image restoration from a 1/(6 × 6)-subsampled image of Finger01
without coarse-to-fine processing.

Fig. 12 Visualized orientation of ridge flow in Finger01: (a) original image, (b) 1/(6 ×
6)-subsampled image, (c)–(l) restored images (estimated angle θ).

information after n0 = 400 is very close to the original
information (Fig. 12(a)). Using the orientation infor-
mation thus obtained, the adaptive DRDS can restore
the pattern of Finger01 correctly.

Figures 13, 14 and 15 show the variation of match-
ing scores between the original image of Finger01 and
the restored images of Finger01–Finger15 for the case
of subsampling rate: 1/(4×4), 1/(5×5) and 1/(6×6),
respectively. The matching score of the restored image
of Finger01 increases selectively as the number of steps
n0 increases. For every experimental trial, the optimal
discrimination capability is obtained around n0 = 400,
which is indicated with a vertical dashed line in every
figure. The horizontal dashed line indicates the thresh-
old for fingerprint discrimination, where we employ the
threshold value 0.5. In the range of n0 = 200 ∼ 300, the

Fig. 13 Matching scores between the original image of Fin-
ger01 and the restored images of Finger01–Finger15 (restoration
from 1/(4 × 4)-subsampled images).
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matching score for the wrong fingerprints drop gradu-
ally while the correct fingerprint keeps sufficient level
of matching score.

Tables 1, 2 and 3 summarize matching scores (at
n0 = 400) between original and restored images of
Finger01–Finger15 for subsampling rates 1/(4 × 4),
1/(5 × 5) and 1/(6 × 6), respectively. For these cases,
auto-correlation exhibits significantly higher scores
than the cross-correlation scores. Thus, we can confirm
that the proposed algorithm restores the original finger-
print patterns from subsampled images of Finger01–15
completely for subsampling rates 1/(4 × 4), 1/(5 × 5)

Fig. 14 Matching scores between the original image of Fin-
ger01 and the restored images of Finger01–Finger15 (restoration
from 1/(5 × 5)-subsampled images).

and 1/(6× 6).
Table 4 compares the success rate of fingerprint

identification between the restoration algorithms with
and without coarse-to-fine processing for various sub-
sampling rates. The original algorithm achieves 100%
identification up to 1/(4 × 4) subsampling. On the
other hand, the proposed algorithm employing coarse-
to-fine processing can completely restore the original
fingerprint pattern up to the subsampling rate 1/(6 ×
6). This experiment demonstrates a potential capa-
bility of adaptive DRDS with coarse-to-fine approach
to enhance the performance of matching algorithms

Fig. 15 Matching scores between the original image of Fin-
ger01 and the restored images of Finger01–Finger15 (restoration
from 1/(6 × 6)-subsampled images).

Table 1 Matching scores at n0 = 400 (restoration from 1/(4 × 4)-subsampled images).

Table 2 Matching scores at n0 = 400 (restoration from 1/(5 × 5)-subsampled images).
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Table 3 Matching scores at n0 = 400 (restoration from 1/(6× 6)-subsampled images).

Table 4 Comparison of identification rate.

Without Coarse-to-Fine Processing With Coarse-to-Fine Processing
Subsampling Number of Identification Number of Identification

Rate Identified Samples Rate Identified Samples Rate

1/(3 × 3) 15 100% 15 100%
1/(3 × 4) 15 100% 15 100%
1/(4 × 4) 15 100% 15 100%
1/(4 × 5) 14 93% 15 100%
1/(5 × 5) 11 73% 15 100%
1/(5 × 6) 7 47% 15 100%
1/(6 × 6) 6 40% 15 100%
1/(6 × 7) 2 13% 14 93%

1/(7 × 7) 0 0% 12 80%
1/(7 × 8) 0 0% 5 33%
1/(8 × 8) 0 0% 1 7%

for blurred fingerprint images. For subsampling rates
higher than 1/(6×6), it becomes increasingly difficult to
find correct orientation masks. In this region, dedicated
fingerprint models (such as deformable templates) may
be required for further improvement of restoration per-
formance.

5. Conclusion

This paper presents an application of DRDS to finger-
print image restoration. The adaptive DRDS combined
with a coarse-to-fine orientation estimation technique
can reconstruct complete fingerprint patterns even from
1/(6× 6)-subsampled images. The proposed algorithm
may be useful in many person identification applica-
tions based on fingerprint images.
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Appendix: Pattern Formation Capability of
DRDS

This appendix explains how to determine the parameter
set of DRDS. To make a DRDS model generate station-
ary Turing patterns, we need to select the parameters
of DRDS to satisfy the instability condition described
in [5]. In practical situation, the above condition is ex-
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Fig. A· 1 Matlab sample script of spot pattern formation
using DRDS (Image Processing Toolbox is required).

pressed by a set of inequalities, and hence we can find
only the ranges of parameters for possible pattern for-
mation. Note that the above condition is not sufficient
to ensure the generation of spatial patterns. In order
to find the parameter set for DRDS that actually gen-
erates the desired patterns, we must carry out simula-
tion experiments for the given DRDS model (since the
system exhibits nonlinear dynamics). To give a hands-
on example of how one observes the pattern formation
with DRDS, Fig. A· 1 shows the Matlab sample script
for the DRDS defined by Eq. (2). Using this script, we
can observe the 2D spot pattern development from the
initial random concentration.
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